
1

2020 AP Computer Science A - Summer

Packet Topics Table of Contents
1. logical operators, constructs & methods, pp. 2-9
2. arrays, for_loops & methods, pp. 10-27
3. Strings, String methods & user methods, pp. 28-51
4. Comprehensive Review of Java Syntax, Primitive
Types, Operators, Arrays, Strings, and Programming
Basics, pp. 52-63
5. Note that all the programs discussed in 1-3 above
are CodingBat.com programs that can be run and
tested by creating an account on CodingBat.com. So,
it's not necessary (though desirable) to implement
these programs in Eclipse. However, familiarity with
what 'System.out.println("Hello World");' will print is
necessary (see pp. 55-60).
6. Intensive study of these notes and working as many
of the CodingBat.com Logic, Array & String problems
as possible, should be very good preparation for the
first APCS test which will be given in the second week
of class. Good Luck and have a Great Summer!

Java Language: Some Basic Elements

Numeric Operators

C K *

/ % CC

KK

Numeric Comparators

! = O = = =

! O ! =

Grouping & Punct. Symbols

;

,

Boolean Operators

true false

&&

!

Control Operators

if else

for while

return break

continue

Assignment Operators

= C=

K=

Data Types

int double

long String

char boolean

Math Function Library

Math.sqrt() Math.pow()

Math.abs() Math.PI

Math.sin() Math.cos()

Math.exp() Math.log()

Math.min() Math.max()

String Operators & Methods

C " "

length() substring()

equals() equalsIgnoreCase()

charAt() compareTo()

Object Specifiers,
Operators & Methods

class static

public private

new .

main() equals()

toString()

System Print Methods

System.out.print()

System.out.println()

System.out.printf()

Array Operators
& Methods

a i

new

length

clone()

toString()

Convert String to Number

Integer.parseInt()

Double.parseDouble()

2

Java Language: Logic 1

Problem 1. The parameter weekday is true if it is a weekday, and the parameter vacation is true if we are
on vacation. We sleep in if it is not a weekday or we're on vacation. Construct a Java statement that
defines a Java variable, sleepIn, that is true if we sleep in.

Note that parameters are variables (values) provided by other parts of the Java program. Boolean
variables can have only two values: true or false. Here is the correct Java statement:

boolean sleepIn = (!weekday || vacation);

The Java statement above defines a variable of type boolean and assigns it's value to the value of the
Java version of the statement: "not weekday or vacation". Here is a table with a complete breakdown of
the Java language elements of this statement:

boolean sleepIn = (! weekday || vacation) ;

data
type

variable
name

assign.
operator

grouping
 symbol

not
operator

param.
name

or
operator

param.
name

grouping
 symbol

punct.
symbol

Problem 2. We have two monkeys, and we are in trouble if they are both smiling or if neither of them is
smiling. The parameter aSmile is true if monkey a is smiling and bSmile is true if monkey b is smiling.
Use these parameters to construct Java statements defining the variables bothSmile and neithSmile.
Then use these two variables to construct a Java statement that defines the variable inTrouble.

boolean bothSmile = (aSmile && bSmile);

boolean bothSmile = (aSmile && bSmile) ;

data
type

variable
name

assign.
operator

grouping
symbol

param.
name

and
operator

param.
name

grouping
symbol

punct.
symbol

boolean neithSmile = (!aSmile && !bSmile);

boolean neithSmile = (! aSmile && ! bSmile) ;

data
type

variable
name

assign.
oper.

group.
symbol

not
oper.

param.
name

and
oper.

not
oper.

param.
name

group.
symbol

punct.
symbol

So, to complete the problem we use the two variables defined above.

boolean inTrouble = (bothSmile || neithSmile);

3

Note that we also could have skipped the first two steps, and instead, defined inTrouble using the
following statement.

boolean inTrouble = ((aSmile && bSmile) || (!aSmile && !bSmile));

Problem 3. We have a loud talking parrot. The parameter talking is true if the parrot is talking. The
hour parameter is the current hour time in the range 1 to 24. We are in trouble if the parrot is talking and
the hour is before 7 or after 20. Use these parameters to construct a Java statement defining the variable
inTrouble.

boolean inTrouble = (talking && ((hour < 7) || (hour > 20));

Note that in this statement we also use the < comparator to compare the value of the hour parameter to
the integer 7 and the > comparator to compare the value of the hour parameter to the integer 20. Each of
these component statements, namely (hour < 7) and (hour > 20) , will have boolean values of true or
false depending on the integer value of the integer parameter hour. Remember, parameters are variables
whose values are provided by some other part of the Java program.

Problem 4. We are given two integer parameters a and b. Use these parameters to construct a Java
statement defining the variable makesTen, which is true if the value of either one of the parameters is
10, or if their sum is 10.

boolean makesTen = ((a == 10) || (b == 10) || (a + b == 10));

Notice the difference between the single equal sign and the double equal sign. In the statement (a == 10)
the double equal sign tests whether or not the value of the parameter a is the integer 10. The other two
statements on the right also are logical tests that depend on the values of the parmeters a and b. These
three statements are then combined using the operator || to create the complete logical test statement,
which assigns the value true or false to the variable makesTen. So, the difference is that the single equal
sign always assigns a value to a variable, but the double equal sign tests the value of an already existing
variable (possibly more than one variable).
If we wanted to assign the value 10 to a new integer variable a, we would use the statement: int a = 10;

Homework. Here are some more problems for you to do on your own.

Problem 5. Given two temperatures (integer parameters) temp1 and temp2, construct a Java statement
defining the variable icyHot, which is true if one is less than 0 and the other is greater than 100.

Problem 6. Given an integer (parameter) n, construct a Java statement defining the variable
nearHundred, which is true if n is within 10 of either 100 or 200. Note that Math.abs(x) returns the
absolute value of a number, which can be used to simplify this problem.

Problem 7. Given two integer parameters a and b, construct a Java statement defining the variable
in1020, which is true if either of them is in the range from 10 to 20 inclusive.

Problem 8. Let's say that a number is "teen" if it is in the range from 13 to 19 inclusive. Given three
integer parameters a, b, and c, construct a Java statement defining the variable hasTeen, which is true if
one or more of a, b, and c are teen.

Problem 9. As in Problem 8, a number is "teen" if it is in the range from 13 to 19 inclusive. Given two
integer parameters a, and b, construct a Java statement defining the variable loneTeen, which is true if
one or the other is teen, but not both.

4

Java Language: Logic 2

In this section we will extend our Java Logic development to include logical flow of control using if,
else, and return. In Java parlance, a Java "method" is essentially a mathematical function or procedure
that produces (returns) an answer based on given logical conditions and mathematical calculations.
However, note that not all Java methods return an answer, e.g. a method may simply update an already
existing internal variable such as an average or a total.

The problems in this section will address the construction of Java code fragments (statements) that could
be used to define a Java method. These code fragments are not complete Java methods, but just part of
them. Later, we will use these code fragments to create complete Java methods.

Problem 1. Given two integer parameters a and b, return their sum if they aren't equal, otherwise return
double their sum. Construct a Java code fragment (statements) for a Java method that will return the
correct answers under the given conditions.

general format long way 1 long way 2 short way 1 short way 2

if (condition)
{

 return ans1;
}
else
{

 return ans2;
}

int ans1 = a + b;
int ans2 = 2*ans1;

if (a != b)
{
 return ans1;
}
else
{
 return ans2;
}

int ans1 = a + b;
int ans2 = 2*ans1;

if (a == b)
{
 return ans2;
}
else
{
 return ans1;
}

if (a != b)
 return (a + b);
else
 return 2*(a + b);

if (a == b)
 return 2*(a + b);
else
 return (a + b);

In the table above we have given examples of four different correct solutions. Notice that in the two long
versions we have defined integer variables ans1 and ans2, which strictly speaking isn't necessary here
but often in more complex situations it will be very helpful to do so. Also, in the two long versions we
have included the curly braces, which again strictly speaking isn't necessary here, since there is only one
statement following the logical flow of control operators if and else. However, if there is more than one
statement following one these logical operators then the curly braces must be included, otherwise the
Java code won't be interpreted correctly and hence won't run correctly.

Problem 2. Given an integer parameter n, return the absolute difference between n and 21, except return
double the absolute difference if n is over 21. Construct a Java code fragment (statements) for a Java
method that will return the correct answers under the given conditions.

way 1 way 2

if (n > 21)
 return 2*Math.abs(n-21);
else
 return Math.abs(n-21);

if (n <= 21)
 return Math.abs(n-21);
else
 return 2*Math.abs(n-21);

5

Problem 3. Given two integer parameters a and b, and a boolean parameter negative, if negative is true
then return true if a and b are both negative. If negative is false, return true if a and b have opposite
signs. Otherwise, return false. Construct a Java code fragment (statements) for a Java method that will
return the correct answers under the given conditions.

way 1 way 2

if (negative)
{
 if (a < 0 && b < 0)
 return true;
 else
 return false;
}
else
{
 if (a*b < 0)
 return true;
 else
 return false;
}

if (negative)
 return (a < 0 && b < 0);
else
 return (a*b < 0);

Notice that, since in each of the statements if (a < 0 && b < 0) and if (a*b < 0) we are testing a boolean
(logical) condition and returning true or false based on whether or not the condition itself is true or false,
we may simply return the boolean value of the logical condition itself ! As you can see, there are often
several ways to write Java code that works. One of the most appealing and interesting aspects of Java
programming is to try to find and create the most elegant (logically clear, concise) solution possible.

Homework. Here are some more problems for you to do on your own. In each one, construct a Java
code fragment (statements) for a Java method that will return the correct answers under the given
conditions.

Problem 4. Given three integer parameters a, b, and c, return the largest one.

Problem 5. Given two integer parameters a and b, return whichever value is nearest to the value 10, or
return 0 in the event of a tie. Hint: Use Math.abs(x).

Problem 6. Given two positive integer parameters a and b, return the larger value that is in the range
from 10 to 20 inclusive, or return 0 if neither is in that range.

Problem 7. Given two integer parameters a and b, return false if one is negative. Return true if they aren't
negative and have the same last digit, such as with 27 and 57. Otherwise, return false. Note that the
"mod" operator, %, computes remainders, so 17 % 10 is 7, i.e. 17 mod 10 is the remainder after
dividing 17 by 10, which is 7.

6

Java Language: Logic 3

In this section we continue our Java Logic development to include logical flow of control using if,
else if, else, and return. Again, the problems in this section will address the construction of Java code
fragments (statements) that could be used to define a Java method. These code fragments are not
complete Java methods, but just part of them. Later, we will use these code fragments to create complete
Java methods.

Problem 1. You and your date are trying to get a table at a restaurant. The parameter you is the
stylishness of your clothes and the parameter date is the stylishness of your date's clothes, both in the
range from 0 to 10. You and your date get the table based on the following fashion assessment: if either
of you is very stylish, 8 or more, then return 2 (yes) with the exception that if either of you has style 2 or
less, then return 0 (no). Otherwise, return 1 (maybe).

general format way 1 way 2

if (condition1)
{

 return ans1;
}
else if (condition2)
{

 return ans2;
}
else
{

 return ans3;
}

if (you <= 2 || date <= 2)
{
 return 0;
}
else if (you >= 8 || date >= 8)
{
 return 2;
}
else
{
 return 1;
}

if (you <= 2 || date <= 2)
 return 0;

if (you >= 8 || date >= 8)
 return 2;

return 1;

general format way 3 way 4

int answer;
if (condition1)
{

 answer = ans1;
}
else if (condition2)
{

 answer = ans2;
}
else
{

 answer = ans3;
}
return answer;

int getTable;

if (you <= 2 || date <= 2)
{
 getTable = 0;
}
else if (you >= 8 || date >= 8)
{
 getTable = 2;
}
else
{
 getTable = 1;
}

return getTable;

int getTable = 1;

if (you >= 8 || date >= 8)
 getTable = 2;

if (you <= 2 || date <= 2)
 getTable = 0;

return getTable;

7

In the tables above we have given examples of four different correct solutions to Problem 1. Our purpose
here is both to illustrate the use of the if else if else construction, and to show that there are
many ways to write Java code that works in a given situation. Way 2 probably seems like the simplest
solution for this specific problem. However, it is important to note that way 3 is a very important
template that will be, in general, the most useful for more complex Java programs. Comparing way 3
and way 4 it is important to realize that way 4 is less efficient, since every lone if statement will be
tested. In contrast, using the if else if else construction, once a condition has been found to be
true nothing below it is tested. Furthermore, the logical structure of way 3 is much clearer than way 4. In
fact, if we switch the two if statements in way 4, then the program is no longer correct (why?). On the
other hand, if we use the logical structure in way 3, then when testing the condition in an else if or else
statement the negation of all the conditions that occurred above is automatically built in.

Problem 2. Suppose we are given three integer parameters a, b, and c. We want to return their sum,
except that if one of the values is the same as another of the values, it does not count towards the sum.

way 1 way 2

if (a != b && a != c && b != c)
{
 return a + b + c;
}
else if (a != b && a != c)
{
 return a;
}
else if (a != b && b != c)
{
 return b;
}
else if (a != c && b != c)
{
 return c;
}
else
{
 return 0;
}

if (a != b && a != c && b != c)
 return a + b + c;

if (a != b && a != c && b == c)
 return a;

if (a != b && a == c && b != c)
 return b;

if (a == b && a != c && b != c)
 return c;

return 0;

The two solutions in the table above for Problem 2 further illustrate the nice properties of the if else
if else construction. In particular, we see that using way 1, when testing the condition in an else if
or else statement the negation of all the conditions that occurred above is automatically built in. This
means that, in contrast to way 2, we can simplify the expression for the logical condition in each else if
statement.

Homework. Here are some more problems for you to do on your own. In each one, construct a Java
code fragment (statements) for a Java method that will return the correct answers under the given
conditions.

Problem 3. Suppose we are given three integer parameters a, b, and c. We want to return their sum,
except that if one of the values is 13 then it does not count towards the sum and values to its right do not
count. So for example, if b is 13, then both b and c do not count.

8

Problem 4. Given two positive integer parameters a and b, return whichever value is nearest to 21
without going over. Return 0 if they both go over.

Problem 5. You are driving a little too fast, and a police officer stops you. Write code to return the type
of ticket encoded as an integer: no ticket = 0, small ticket = 1, big ticket = 2. If the parameter speed is 60
or less, then return 0 (no ticket). If speed is between 61 and 80 inclusive, then return 1 (small ticket). If
speed is 81 or more, then return 2 (big ticket). Unless the parameter birthday is true, then since it is your
birthday, your speed can be 5 higher in all cases.

Problem 6. Your cell phone rings and you are to use the boolean parameters isMorning, isMom, and
isAsleep to determine whether or not to answer it. Normally you answer, except in the morning you only
answer if it is your mom calling. In all cases, if you are asleep, you do not answer. Return true or false
based on these conditions.

Problem 7. Suppose you have a red lottery ticket and three integer parameters a, b, and c each
representing values 0, 1, or 2 on the ticket. If they are all the value 2, then return the payoff 10.
Otherwise, if they are all the same, then return the payoff 5. Otherwise, so long as both b and c are
different from a, then return the payoff 1. Otherwise, return the payoff 0.

Problem 8. Suppose you have a green lottery ticket and three integer parameters a, b, and c each
representing values on the ticket. If the numbers are all different from each other, then return the payoff
0. If all of the numbers are the same, then return the payoff 20. If two of the numbers are the same, then
return the payoff 10.

Problem 9. Suppose you have a blue lottery ticket and three integer parameters a, b, and c each
representing values on the ticket. This makes three pairs, which we will call ab, bc, and ac. Consider the
sum of the numbers in each pair. If any pair sums to exactly 10, then return the payoff 10. Otherwise, if
the ab sum is exactly 10 more than either bc or ac sums, then return the payoff 5. Otherwise, return the
payoff 0.

9

 Eclipse Programs: Arrays Part 1
Often a program must deal with a large amount of data. Fortunately, data can usually be organized and
processed systematically. Arrays are very useful for organizing and storing data. This chapter will discuss
arrays and give some examples of how they work.

Topics:

The idea of arrays.
Array declaration.
Array declaration and construction.
Using arrays.
Automatic bounds checking.
Initializer lists.

QUESTION 1:

Say that you are writing a program that reads and stores 100 numbers. Are you happy to write 100 input
statements with 100 different variables?

A good answer might be:

Probably not. It would be nice to have some organized way of reading and storing the values.

Picture of an Array
An array is an object that can be used to store a list of values. It is made out of a
contiguous block of memory that is divided into a number of "slots." Each slot can hold
a value, and all the values are of the same type (for example, primitive type int.) The
picture shows an array.

The name of this array is data. The slots are indexed 0 through 9, and each slot holds an
int. Each slot can be accessed by using its index. For example, data[0] is the slot which
is indexed by zero (which contains the value 23), data[5] is the slot which is indexed by
5 (which contains the value 14).

Important Facts:

Indexes always start at zero, and count up by one's until the last slot of the array.
If there are n slots in an array, the indexes will be 0 through n-1.

QUESTION 2:

What value is in data[7] ?
10

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap46/ch46_2.html

What value is in data[7] ?

Answer: 103

Using Arrays
Every slot of an array holds a value of the same type. So, for
example, you can have an array of int, an array of double, and array
of String, and so on.

The picture on the left shows an array of int. Every slot contains an
int. A slot of this array can be used anywhere a variable of type int
can be used. For example,

data[3] = 99 ;

works just like an assignment statement with an int variable on the
left of the assignment operator. After it has been executed, the array
will look like the picture on the right.

The value in slot 3 of the array has been changed.

QUESTION 3:

What do you suppose is the value of the arithmetic expression:

data[2] + data[6]

11

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap46/ch46_4.html

What do you suppose is the value of the arithmetic expression:

data[2] + data[6]

A good answer is:

23 --- data[2] contains a 14 and data[6] contains a 9, the sum is 23

Arithmetic Expressions
A slot of an array that contains a numeric type (such as int) can be used anywhere a
numeric variable can be used. In an arithmetic expression such as the one in the question,
the number in the designated slot of the array is used.

An arithmetic expression can contain a mix of literals, variables, and array slots. For
example, if x contains a 10, then

(x + data[2]) / 4

evaluates to (10+14) / 4.

Here are some other legal statements:

data[0] = (x + data[2]) / 4 ;

data[2] = data[2] + 1;

x = data[3]++ ;

data[4] = data[1] / data[6]

QUESTION 4:

Assume that the array holds values as in the picture. What will be the result of executing the statement:

data[0] = data[6] + 8;

12

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap46/ch46_5.html

What will be the result of executing the statement:

data[0] = data[6] + 8;

A good answer is:

The value 17 is put into slot 0 of data.

Arrays are Objects
Array declarations look like this:

type[] arrayName;

This tells the compiler that arrayName will be used as the name of an array containing type. However, the
actual array is not constructed by this declaration. Often an array is declared and constructed in one statetment
like this:

type[] arrayName = new type[length];

This tells the compiler that arrayName will be used as the name of an array containing type, and constructs an
array object containing length number of slots.

An array is an object, and like any other object in Java is constructed out of main storage as the program is
running. The array constructor uses different syntax than most object constructors; type[length] names the
type of data in each slot and the number of slots. Once an array has been constructed, the number of slots it
has does not change.

For example, the example array we have been using might have been declared and constructed like this:

int[] data = new int[10];

This statement creates the array data and puts a zero into each slot.

QUESTION 5:

1. What is the length of the array data?
2. What are the indexes of data?

13

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap46/ch46_6.html

int[] data = new int[10];

A good answer is:

1. What is the length of the array data? 10
2. What are the indexes of data? 0..9

Bounds Checking
Recall that:

The length of an array is how many slots it has.
An array of length n has slots indexed 0..(n-1)

Indexes must be an integer type (since it makes no sense to speak of slot number 1.59, say.) It is OK to have
spaces around the index of an array, for example data[1] and data[1] are exactly the same as far as the
compiler is concerned.

Say that an array were declared:

int[] data = new int[10];

Then it is not legal to refer to a slot that does not exist:

data[-1] illegal
data[10] illegal (given the above declaration)
data[1.5] illegal
data[0] OK
data[9] OK

If you have one of the above illegal expressions in your program, your program will not compile. Often the
size of an array is not known to the compiler (since the array is constructed as the program is running, its
length does not need to be known to the compiler.) However, if your running program tries to refer to a slot
that does not exist, an exception will be thrown, and (unless another part of your program does something
about it) your program be terminated.

QUESTION 6:

Here is a declaration of another array:

int[] scores = new double[25];

Which of the following are legal?

scores[0]
scores[1]
scores[-1]
scores[10]

scores[25]
scores[24]

14

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap46/ch46_7.html

int[] scores = new double[25];

A good answer is:
scores[0] OK
scores[1] OK
scores[-1] illegal
scores[10] OK
scores[25] illegal
scores[24] OK

More on Array Declaration
Lacking any other information, the slots of an array are initialized to the default value for their type, so each
slot of a numeric array is initialized to zero.

Of course, the program can explicity place values into slots after the array has been constructed:

public class MainArray01 {

 public static void main (String[] args)
 {
 int[] stuff = new int[5];

 stuff[0] = 23;
 stuff[1] = 38;
 stuff[2] = 7*2;

 System.out.println("stuff[0] has " + stuff[0]);
 System.out.println("stuff[1] has " + stuff[1]);
 System.out.println("stuff[2] has " + stuff[2]);
 System.out.println("stuff[3] has " + stuff[3]);
 }
}

(Create this program above using Eclipse)

QUESTION 7:

What does the above program write to the console window in Eclipse?

Which of the following are legal?

15

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap46/ch46_8.html

A good answer is:

stuff[0] has 23
stuff[1] has 38
stuff[2] has 14
stuff[3] has 0

Using a Variable as an Index
The index of an array is always an integer type. It does not have to be a literal. It can be any expression that
evaluates to an integer. For example, the following are legal:

int values[] = new int[7];
int index;

index = 0;
values[index] = 71; // put 71 into slot 0

index = 5;
values[index] = 23; // put 23 into slot 5

index = 3;
values[2+2] = values[index-3]; // same as values[4] = values[0];

Using an expression for an array index is a very powerful tool. Often a problem is solved by organizing the
data into arrays, and then processing that data in a systematic way using variables as indexes. Here is a further
example:

 public static void main (String[] args)
 {
 double[] val = new double[4]; //an array of doubles

 val[0] = 0.12;
 val[1] = 1.43;
 val[2] = 2.98;

 int j = 3;
 System.out.println(val[j]);
 System.out.println(val[j-1]);

 j = j-2;
 System.out.println(val[j]);
 }
}

QUESTION 8:

What does the above program output to the console window in Eclipse?

(Create this program above using Eclipse)

public class MainArray02 {

16

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap46/ch46_9.html

A good answer is:

0.0
2.98
1.43

More Complicated Example
Here is a more complicated example of array subscripting:

 public static void main (String[] args)
 {
 double[] val = new double[4];

 val[0] = 1.5;
 val[1] = 10.0;
 val[2] = 15.5;

 int j = 3;
 val[j] = val[j-1] + val[j-2]; // same as val[3] = val[2] + val[1]

 System.out.println("val[" + j + "] = " + val[j]);

 }
}

QUESTION 9:

What does the above program print out?

public class MainArray03 {

(Create this program above using Eclipse)

A good answer is:

val[3] == 25.5

17

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap46/ch46_10.html

Initializer Lists
You can declare, construct, and initialize the array all in one statement:

int[] data = {23, 38, 14, -3, 0, 14, 9, 103, 0, -56 };

This declares an array of int which will be named data, constructs an int array of 10 slots (indexed 0..9), and
puts the designated values into the slots. The first value in the initializer list corresponds to index 0, the
second value coresponds to index 1, and so on. (So in this example, data[0] gets the 23.)

You do not have to say how many slots the array has. The compiler will count the values in the initializer list
and make that many slots. Remember that once an array has been constructed, the number of slots it has does
not change. (But of course you can change what is in the slots.)

QUESTION 10:

Write a declaration for an array of double named "dvals" that is initialized to contain 0.0, 0.5, 1.5, 2.0, and 2.5.

A good answer is: double[] dvals = { 0.0, 0.5, 1.5, 2.0, 2.5 };

Several Arrays per Program
A program can have any number of arrays in it. Often values are copied back and forth between the various
arrays. Here is an example program that uses two arrays:

 public static void main (String[] args)
 {
 int[] valA = { 12, 23, 45, 56 };

 int[] valB = new int[4];

 __________ = ____________ ;

 __________ = ____________ ;

 __________ = ____________ ;

 __________ = ____________ ;

 }
}

QUESTION 11:

Fill in the blanks so that the values in valA are copied into the corresponding slots of valB.

public class MainArray04 {

18

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap46/ch46_11.html

Fill in the blanks so that the values in valA are copied into the corresponding slots of valB.

A good answer is:

 public static void main (String[] args)
 {
 int[] valA = { 12, 23, 45, 56 };

 int[] valB = new int[4];

 valB[0] = valA[0] ;
 valB[1] = valA[1] ;
 valB[2] = valA[2] ;
 valB[3] = valA[3] ;

 }
}

Copying Values in Slots
In this example, the int in slot 0 of valA is copied to slot 0 of valB, the int in slot 1 of valA is copied to slot 1
of valB, and so on.

The following statements do NOT do the same thing as the statements in the program above:

valB = valA ;

Remember that arrays are objects. The statement above will merely copy the object reference for
the variable valA into the object reference for the variable valB, resulting in two ways to access the
single array object, i.e. two variables that reference or point to exactly the same memory location.
So, a change in the value of either variable will change the value of the other.

public class MainArray04 {

(Create this program above using Eclipse)

 int[] valA = { 12, 23, 45, 56 };

 int[] valB = new int[4];

// point to exactly the same memory location

QUESTION 12:

Say that the statements above have been executed. What would the following two statements do?

valA[2] = 999;
System.out.println(valA[2] + " " + valB[2]);

A good answer is:

Since valA and valB both refer to the same object (memory location), valA[2] and valB[2] are two ways to
refer to the same slot which is changed for both variables, not just valA. The statements print out:

999 999

19

Counting Loops and Arrays
Remember that in Java, the index of an array starts at 0 and counts up to one less than the number of elements
in the array. This is, of course, exactly what counting loops can do. Here is a program that does that, except
for a blank or two:

 public static void main (String[] args)
 {
 int[] arr = { 2, 4, 6, 8, 10, 1, 3, 5, 7, 9 };

 for (int index= ___________ ; ________________ ; _____________)
 {
 System.out.println(____________________);
 }
 }
}

QUESTION 2:

Can you fill in the blanks so that the program prints out every element, in order?

 Eclipse Programs: Arrays Part 2

public class MainArray05 {

QUESTION 1:

How (in general) could you print out every element of an array with 100 elements?

A good answer is: This sounds like a good place for a counting loop.

20

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap47/ch47_3.html

Fill in the blanks so that the program prints out every element, in order.

A good answer is:

 public static void main (String[] args)
 {
 int[] arr = { 2, 4, 6, 8, 10, 1, 3, 5, 7, 9 };

 for (int index= 0 ; index < 10 ; index++)
 {
 System.out.println(arr[index]);
 }
 }
}

The length of an Array
It is annoying to have to count how many elements there are in an array. Worse, this might not be known
when the program is being written. Array objects are created as the program is running and can be created
with any number of elements. It is essential, sometimes, to write a program that can deal with an array who's
size is not known until the program is running.

This can be done by asking the array how many elements it has. Remember that an array is an object. As an
object, it has more in it than just the slots. An array object has a member length that is the number of slots
(number of elements) it has. The for statement can be written like this:

 for (int index= 0 ; index < arr.length; index++)

Lines of code similar to the above are very common in programs. One dimensional arrays are very common.
Usually a program will use many of them. Almost always a program will "visit" each element of an array
using a for loop such as the above.

QUESTION 3:

Can you fill in the blanks in this line of code so that the elements of the array are visited from the last element
down to element 0?

for (int index= ___________ ; ________________ ; _____________)

public class MainArray05 {

(Create this program above using Eclipse)

21

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap47/ch47_4.html

Fill in the blanks in this line of code so that the elements of the array are visited from the last element down to
element 0:

A good answer is:

for (int index= arr.length-1 ; index >= 0 ; index--)

Reading in Each Element
Here is a program that prompts the user and reads in each element. For now, the array is required to be five
elements long. After the array is filled with data, the array is written to the monitor.

import java.io.* ;

 public static void main (String[] args) throws IOException
 {

 int[] array = new int[5];
 int data;

 BufferedReader inData = new BufferedReader (new InputStreamReader(System.in));

 // input the data
 for (___________ ; ________________ ; _____________)
 {
 System.out.println("enter an integer: ");
 data = Integer.parseInt(inData.readLine());
 array[index] = data ;
 }

 // write out the data
 for (___________ ; ________________ ; _____________)
 {
 System.out.println("array[" + index + "] = " + array[index]);
 }

 }
}

QUESTION 4:

Can you fill in the blanks so that the program works as described?

public class MainArray06 {

22

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap47/ch47_5.html

A good answer is:

The complete program below.

Complete Program

import java.io.* ;

 public static void main (String[] args) throws IOException
 {

 int[] array = new int[5];
 int data;

 BufferedReader inData = new BufferedReader (new InputStreamReader(System.in));

 // input the data
 for (int index=0; index < array.length; index++)
 {
 System.out.println("enter an integer: ");
 data = Integer.parseInt(inData.readLine());
 array[index] = data ;
 }

 // write out the data
 for (int index=0; index < array.length; index++)
 {
 System.out.println("array[" + index + "] = " + array[index]);
 }

 }
}

QUESTION 5:

The variable data is not really needed in this program. Can you mentally change the program so that this
variable is not used?

(Create this program above using Eclipse)

public class MainArray06 {

23

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap47/ch47_6.html

The variable data is not really needed in this program. Can you mentally change the program so that this
variable is not used?

A good answer is:

The two lines:

 data = Integer.parseInt(inData.readLine());
 array[index] = data ;

can be replaced by the single line:

array[index] = Integer.parseInt(inData.readLine());

And then the declaration int data; should be removed.

Array Length Determined when the Program Runs
Because an array object is constructed as the program runs, its size can determined at run time. The
programmer does not need to say how many elements the array has. The user picks the size when the
program runs. The array constructor creates the array after the user has specified how large the array is to be.
Here is the previous example, with some modifications:

import java.io.* ;

 public static void main (String[] args) throws IOException
 {
 BufferedReader inData = new BufferedReader (new InputStreamReader(System.in));
 int[] array;

 // determine the array size and construct the array
 System.out.println("What length is the array?");
 int size = Integer.parseInt(inData.readLine());

 array = new int[size];

 // input the data
 for (int index=0; index < array.length; index++)
 {
 System.out.println("enter an integer: ");
 array[index] = Integer.parseInt(inData.readLine());
 }

 // write out the data
 for (int index=0; index < array.length; index++)
 {
 System.out.println("array[" + index + "] = " + array[index]);
 }

 }
}

public class MainArray07

(Create this program above using Eclipse) 24

Here is the program. Carefully examine how the if statement is used to change max.

 public static void main (String[] args)
 {

 int[] array = { -20, 19, 1, 5, -1, 27, 19, 5 } ;
 int max;

 // initialize the current maximum
 max = array[0];

 // scan the array
 for (int index=0; index < array.length; index++)
 {
 if (array[index] > max) // examine the current element

max = array[index]; // if it is the largest so far, change max

 }

 System.out.println("The maximum of this array is: " + max);
 }
}

Finding the Maximum of an Array

(Create this program above using Eclipse)

public class MainArray08

As with the maximum-finding program, you should run this program with various sets of data and confirm
that it works with all of them.

 public static void main (String[] args)
 {

 int[] array = { -20, 19, 1, 5, -1, 27, 19, 5 } ;
 int min;

 // initialize the current minimum
 min = array[0];

 // scan the array
 for (int index=0; index < array.length; index++)
 {
 if (array[index] < min)

min = array[index] ;

 }

 System.out.println("The minimum of this array is: " + min);
 }
}

Finding the Minimum of an Array

(Create this program above using Eclipse)

public class MainArray09

25

The variable total is declared to be of double type, since the sum of the doubles in the array will be a double.
It is initialized to zero. Sums should be initialized to zero as a matter of course.

 public static void main (String[] args)
 {
 double[] array = { -47.39, 24.96, -1.02, 3.45, 14.21, 32.6, 19.42 } ;

 // declare and initialize the total
 double total = 0.0 ;

 // add each element of the array to the total
 for (int index=0; index < array.length; index++)
 {
 total = total + array[index] ;

 }

 System.out.println("The total is: " + total);
 }
}

The program visits each element of the array, in order, adding each to the total. When the loop exits, total will
be correct. The statement

 total = total + array[index] ;

would not usually be used. It is more common to use the "+=" operator:

 total += array[index] ;

QUESTION 6:

If you know the sum of the elements in an array of numbers, and know how many elements there are, how
can you compute the average of the elements?

Finding the Total Sum of an Array

public class MainArray10

(Create this program above using Eclipse)

26

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap47/ch47_15.html

A good answer is:

Divide the sum by the number of elements.

Finding the Average of an Array
Of course, this is assuming that there are more than zero elements. Dividing by zero will always result in a
run-time error. Here is the program with some additional statements for computing the average of the
elements:

 public static void main (String[] args)
 {
 double[] array = { -47.39, 24.96, -1.02, 3.45, 14.21, 32.6, 19.42 } ;

 // declare and initialize the total
 double total = 0.0 ;

 // add each element of the array to the total
 for (int index=0; index < array.length; index++)
 {

 total = total + array[index] ;

 }

}

It might look a little strange to test if array contains any elements, since it is obvious that it does. However, in
a more realistic program the array will come from some external source, and sometimes the array will have
length zero.

 if (array.length != 0)
 {
 System.out.println("The total is: " + total);
 System.out.println("The average is: " + total / array.length);
 }
 else
 System.out.println("The array contains no elements.");

 }

public class MainArray11

(Create this program above using Eclipse)

27

http://web.cs.iastate.edu/~honavar/JavaNotes/Notes/chap47/ch47_16.html

Java String Introduction

Strings are an incredibly common type of data in computers. This page introduces the basics of
Java strings: chars, +, length(), and substring().

A Java string is a series of characters gathered together, like the word "Hello", or the phrase
"practice makes perfect". Create a string in the code by writing its chars out between double
quotes.

String stores text -- a word, an email, a book
All computer languages have strings, look similar
"In double quotes"
Sequence of characters ("char")

String str = "Hello";

This picture shows the string object in memory, made up of the individual chars H e l l o. We'll see
what the index numbers 0, 1, 2 .. mean later on.

 Eclipse Programs: Strings Part 1

String + Concatenation
Tthe + (plus) operator between strings puts them together to make a new, bigger string. The
bigger string is just the chars of the first string put together with the chars of the second string.

String a = "kit" + "ten"; // a is "kitten"

Strings are not just made of the letters a-z. Chars can be punctuation and other miscellelaneous
chars. For example in the string "hi ", the 3rd char is a space. This all works with strings stored in
variables too, like this:

String fruit = "apple";
String stars = "***";
String a = fruit + stars; // a is "apple***"

28

https://codingbat.com/about.html
https://codingbat.com/help.html
https://codingbat.com/
https://codingbat.com/doc/code-help-videos.html

Index numbers -- 0, 1, 2, ...
Leftmost char is at index 0
Last char is at index length-1

The chars in a string are identified by "index" numbers. In "Hello" the leftmost char (H) is at index
0, the next char (e) is at index 1, and so on. The index of the last char is always one less than the
length. In this case the length is 5 and 'o' is at index 4. Put another way, the chars in a string are
at indexes 0, 1, 2, .. up through length-1. We'll use the index numbers to slice and dice strings
with substring() in the next section.

CodingBat Practice> helloName
String-1 > helloName (MainString01.java)
Given a string name, e.g. "Bob", return a greeting of the form "Hello Bob!".

helloName("Bob") → "Hello Bob!"
helloName("Alice") → "Hello Alice!"
helloName("X") → "Hello X!"

public String helloName(String name) {

return "Hello " + name + "!";

}

Create and test this program above using Eclipse file: MainString01.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static String helloName(String name)
{

 return "Hello " + name + "!";

}

String Length
The "length" of a string is just the number of chars in it. So "hi" is length 2 and "Hello" is length 5.
The length() method on a string returns its length, like this:

String a = "Hello";
int len = a.length(); // len is 5

String Index Numbers

29

https://codingbat.com/prob/p171896

str.substring(start)
Chars beginning at index start
Through the end of the string
Later: more complex 2-arg substring()

String Substring

The substring() method picks out a part of string using index numbers to identify the desired part.
The simplest form, substring(int start) takes a start index number and returns a new string
made of the chars starting at that index and running through the end of the string:

String str = "Hello";
String a = str.substring(1); // a is "ello" (i.e. starting at index 1)
String b = str.substring(2); // b is "llo"
String c = str.substring(3); // c is "lo"

Above str.substring(1) returns "ello", picking out the part of "Hello" which begins at index 1
(the "H" is at index 0, the "e" is at index 1).

String-1 > extraEnd (MainString02.java)

Given a string, return a new string made of 3 copies of the last 2 chars of the original string. The string
length will be at least 2.

extraEnd("Hello") → "lololo"
extraEnd("ab") → "ababab"
extraEnd("Hi") → "HiHiHi"

Create and test this program using Eclipse file: MainString02.java. Test the
same three examples above. Also, make sure to include the static parameter
as indicated below.
// precondition: string length >= 2.
public static String extraEnd(String str)
{

 int n = str.length();

 String lastTwo = str.substring(n-2);

}

return lastTwo + lastTwo + lastTwo;

30

https://codingbat.com/prob/p161642
https://codingbat.com/prob/p123384
https://codingbat.com/prob/p136351
https://codingbat.com/

str.substring(start)
str.substring(start, end)
Chars beginning at start
Up to but not including end

There is a more complex version of substring() that takes both start and end index numbers:
substring(int start, int end) returns a string of the chars beginning at the start index number
and running up to but not including the end index.

String Substring

String str = "Hello";
String a = str.substring(2, 4); // a is "ll" (not "llo")
String b = str.substring(0, 3); // b is "Hel"
String c = str.substring(4, 5); // c is "o" -- the last char

The c example above uses substring(4, 5) to grab the last char. The 5 is one more than the index
of the last char. However, this does not go out of bounds because of the substring() "up to but not
including" use of the end index. Incidentally, the length of the resulting substring can always be
computed by subtracting (end - start) -- try it with the examples above.

String-1 > firstTwo (MainString03.java)

Given a string, return the string made of its first two chars, so the String "Hello" yields "He". If the string is
shorter than length 2, return whatever there is, so "X" yields "X", and the empty string "" yields the empty
string "". Note that str.length() returns the length of a string.

firstTwo("Hello") → "He"
firstTwo("abcdefg") → "ab"
firstTwo("ab") → "ab"

Create and test this program using Eclipse file: MainString03.java. Test the
same three examples above. Also, make sure to include the static parameter
as indicated below.

public static String firstTwo(String str)
{
 int n = str.length();
 if (n >= 2)
 return str.substring(0,2);

 else
 return str;

}

31

https://codingbat.com/about.html
https://codingbat.com/help.html
https://codingbat.com/
https://codingbat.com/doc/code-help-videos.html
https://codingbat.com/prob/p190570

String Index Errors: "String Index Out Of Bounds" or
"String Index Out Of Range"

Common mistake: index greater than length
Index Out of Bounds Error
If-statement check length first

It is very common to get little errors with the index numbers fed into substring(). The valid index
numbers for substring are basically 0, 1, 2, ... str.length(), so code needs to be careful not to pass
in numbers outside that range. Note that the last number, str.length(), is one beyond the end of
the string. You need this number to fit the "up to but not including" way that substring() works.
For the above "Hello" examples, the valid index numbers are always in the range 0..5 since the
length of "Hello" is 5.

Often avoding substring() out of bounds errors involves adding logic to check the length of the
string. For example, suppose we want to take the first 4 chars of a string, like this...

// Suppose we want the first 4 chars of str
String a = str.substring(0, 4); // WRONG error sometimes

The problem with the above is .. what if the str length is less than 4? In that case, substring(0, 4)
refers to non-existent chars and will fail wen run. One possible solution will add if-logic like this:

if (str.length() >= 4)

 a = str.substring(0, 4);

else

 // whatever you want to do when length is < 4 (see last example above)

 int n = str.length();
 if (n == 2)
 return "";
 else
 return str.substring(1,n-1);

}

String-1 > withoutEnd (MainString04.java)

Given a string, return a version without the first and last char, so "Hello" yields "ell". The string
length will be at least 2.

withoutEnd("Hello") → "ell"
withoutEnd("java") → "av"
withoutEnd("coding") → "odin"

Create and test this program using Eclipse file: MainString04.java. Test the
same three examples above. Also, make sure to include the static parameter
as indicated below.

//precondition: string length >= 2.
public static String withoutEnd(String str)
{

32

https://codingbat.com/prob/p136351
https://codingbat.com/prob/p130781
https://codingbat.com/prob/p174254
https://codingbat.com/

 int n = str.length();
 return str.substring(n-2,n) + str.substring(0,n-2);

}

String-1 > right2 (MainString05.java)

Given a string, return a "rotated right 2" version where the last 2 chars are moved to
the start. The string length will be at least 2.

right2("Hello") → "loHel"
right2("java") → "vaja"
right2("Hi") → "Hi"

Create and test this program using Eclipse file: MainString05.java. Test the
same three examples above. Also, make sure to include the static parameter
as indicated below.

// precondition: n > 1.
public static String right2(String str)
{

String-1 > theEnd (MainString06.java)

Given a string, return a string length 1 from its front, unless front is false, in which case return a string
length 1 from its back. The string will be non-empty.

theEnd("Hello", true) → "H"
theEnd("Hello", false) → "o"
theEnd("oh", true) → "o"

Create and test this program using Eclipse file: MainString06.java. Test the
same three examples above. Also, make sure to include the static parameter
as indicated below.

// precondition: str.length() >= 1;

public static String theEnd(String str, boolean front)
{
 int n = str.length();
 if (!front)
 return str.substring(n-1,n);
 else
 return str.substring(0,1);
}
String-1 > endsLy (MainString07.java)
Given a string, return true if it ends in "ly".
endsLy("oddly") → true
endsLy("y") → false
endsLy("oddy") → false
Create and test this program using Eclipse file: MainString07.java. Test the same three
examples above. Also, make sure to include the static parameter as indicated below.

public static boolean endsLy(String str)
{
 int n = str.length();
 if (n < 2 || !str.substring(n-2,n).equals("ly"))
 return false;
 else
 return true;
}

33

 Java String Equals and Loops

Compare two Strings:
a.equals(b)

Do not use ==
Sadly == compiles, but does not work reliably .. a real trap
In retrospect, an error in the design of Java

String Equals
Use the equals() method to check if 2 strings are the same. The equals() method is case-sensitive,
meaning that the string "HELLO" is considered to be different from the string "hello". The ==
operator does not work reliably with strings. Use == to compare primitive values such as int and
char. Unfortunately, it's easy to accidentally use == to compare strings, but it will not work
reliably. Remember: use equals() to compare strings. There is a variant of equals() called
equalsIgnoreCase() that compares two strings, ignoring uppercase/lowercase differences.

String a = "hello";
String b = "there";

if (a.equals("hello")) {
 // Correct -- use .equals() to compare Strings

}

if (a == "hello") {
 // NO NO NO -- do not use == with Strings

}

// a.equals(b) -> false
// b.equals("there") -> true
// b.equals("There") -> false
// b.equalsIgnoreCase("THERE") -> true

String-1 > hasBad (MainString08.java)
Given a string, return true if "bad" appears starting at index 0 or 1 in the string, such
as with "badxxx" or "xbadxx" but not "xxbadxx". The string may be any length,
including 0. Note: use .equals() to compare 2 strings.
hasBad("badxx") → true
hasBad("xbadxx") → true
hasBad("xxbadxx") → false
Create and test this program using Eclipse file: MainString08.java. Test the same three
examples above. Also, make sure to include the static parameter as indicated below.

public static boolean hasBad(String str) {

 int n = str.length();

 if ((n >= 3 && str.substring(0,3).equals("bad")) ||
 (n >= 4 && str.substring(1,4).equals("bad")))
 return true;
 else
 return false;
}

34

https://codingbat.com/about.html
https://codingbat.com/help.html
https://codingbat.com/
https://codingbat.com/doc/code-help-videos.html

Super-common string for-loop
Loop to hit each index number once:
0, 1, 2, ... length-1
for (int i = 0; i < str.length(); i++) {...}

String For Loop

String-1 > lastTwo (MainString09.java)
Given a string of any length, return a new string where the last 2 chars, if present, are
swapped, so "coding" yields "codign".

lastTwo("coding") → "codign"
lastTwo("cat") → "cta"
lastTwo("ab") → "ba"

Create and test this program using Eclipse file: MainString09.java. Test the same three
examples above. Also, make sure to include the static parameter as indicated below.

public static String lastTwo(String str) {
 int n = str.length();

 if (n <= 1)
 return str;
 else
 // add a correct statement here to complete this method

}

String-2 > countHi (MainString10.java)

Return the number of times that the string "hi" appears anywhere in the given string.

countHi("abc hi ho") → 1
countHi("ABChi hi") → 2
countHi("hihi") → 2

Create and test this program using Eclipse file: MainString10.java. Test the same three
examples above. Also, make sure to include the static parameter as indicated below.

public static int countHi(String str) {

 int n = str.length();

 int count = 0;

 if (n <= 1)

 return 0;

 else

 {

 for (int i = 0; i < n-1 ; i++)

 {

 if (// add a correct statement here to complete this method)

 count++;

 }

 return count;

 }

}

35

https://codingbat.com/prob/p194667
https://codingbat.com/prob/p178318
https://codingbat.com/prob/p198640
https://codingbat.com/

String-2 > catDog (MainString11.java)

Return true if the strings "cat" and "dog" appear the same number of times in the given
string.

catDog("catdog") → true

catDog("catcat") → false

catDog("1cat1cadodog") → true

Create and test this program using Eclipse file: MainString11.java. Test the same three
examples above. Also, make sure to include the static parameter as indicated below.

String-2 > countCode (MainString12.java)

Return the number of times that the string "code" appears anywhere in the given
string, except we'll accept any letter for the 'd', so "cope" and "cooe" count.

countCode("aaacodebbb") → 1

countCode("codexxcode") → 2

countCode("cozexxcope") → 2

Create and test this program using Eclipse file: MainString12.java. Test the same three
examples above. Also, make sure to include the static parameter as indicated below.

public static boolean catDog(String str) {

 int n = str.length();
 int catCount = 0;
 int dogCount = 0;
 if (n > 2)
 {
 for (int i = 0; i < n-2; i++)
 {
 if (// add a correct statement here to complete this method) catCount++;
 if (// add a correct statement here to complete this method) dogCount++;
 }
 }
 return (catCount == dogCount);

}

public static int countCode(String str) {

 int n = str.length();
 int count = 0;

 if (n > 3)
 {
 for (int i = 0; i < n-3; i++)
 {
 if (str.substring(i,i+2).equals("co") && // add a correct statement here to complete this method)
 count++;
 }
 }
 return count;
} 36

 Java String indexOf

str.indexOf(String target) -- searches left-to-right for target
Returns index where found, or -1 if not found
Use to find the first (leftmost) instance of target
str.lastIndexOf(String target) -- searches right-to-left
instead

The indexOf(String target) method searches left-to-right inside the given string for a "target"
string. The indexOf() method returns the index number where the target string is first found or -1
if the target is not found. Like equals(), the indexOf() method is case-sensitive, so uppercase and
lowercase chars are considered to be different.

So basically, if you were going to write a for-loop to iterate over a string and look for a string,
indexOf() can just do it for you. Note that indexOf() works best if you want to find the first
instance of the target. If you want to find all the instances, see the next section.

String str = "Here there everywhere";

int a = str.indexOf("there"); // a is 5
 // b is 1
 // c is -1, "eR" is not found

int b = str.indexOf("er");
int c = str.indexOf("eR");

 Create allIndexes Method (Not a Codingbat problem)

allIndexes (MainString13.java)

This method finds all the indexes at which string1 occurs in string2.

allIndexes("ac","aaacodacbbb") → [2, 6]

allIndexes("e","decodexxcodde")→[1, 5, 12]

allIndexes("cop","cozexcozpex") → []

Create and test this program using Eclipse file: MainString13.java. Test the same three
examples above. Also, make sure to include the static parameter as indicated below.
Note that we are using ArrayList<Integer> which we can add to and remove from after
creation, i. e. the size does not have to be specified in advance and can be empty.

public static ArrayList<Integer> allIndexes(String str1, String str2){

 int n1 = str1.length();
 int n2 = str2.length();

 ArrayList<Integer> indexes = new ArrayList<Integer>();

 if (n1 > n2) return indexes;

 for (int i = 0; i < n2-n1+1; i++)
 {
 if (str2.substring(i,i+n1).equals(str1)) indexes.add(i);
 }

 return indexes;

}

CodingBat.com, Copyright 2012 Nick Parlante.

37

https://codingbat.com/about.html
https://codingbat.com/help.html
https://codingbat.com/
https://codingbat.com/doc/code-help-videos.html
https://codingbat.com/prob/p186759

String-2 > endOther (MainString14.java)
Given two strings, return true if either of the strings appears at the very end of the other string,
ignoring upper/lower case differences (in other words, the computation should not be "case
sensitive"). Note: str.toLowerCase() returns the lowercase version of a string.

endOther("Hiabc", "abc") → true

endOther("AbC", "HiaBc") → true

endOther("abc", "abXabc") → true

Create and test this program above using Eclipse file: MainString14.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static boolean endOther(String a, String b) {

 int n1 = a.length();
 int n2 = b.length();

 if (n1 == n2)
 {
 return a.toLowerCase().equals(b.toLowerCase());
 }
 else if (n1 < n2)
 {
 return a.toLowerCase().equals(b.toLowerCase().substring(n2-n1,n2));
 }
 else
 {
 return b.toLowerCase().equals(a.toLowerCase().substring(n1-n2,n1));
 }

}

 Eclipse Programs: Strings Part 2

38

https://codingbat.com/prob/p171896

String-2 > bobThere (MainString15.java)
Return true if the given string contains a "bob" string, but where the middle 'o' char can be any char.

bobThere("abcbob") → true

bobThere("b9b") → true

bobThere("bac") → false

Create and test this program above using Eclipse file: MainString15.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static boolean bobThere(String str) {

 int n = str.length();

 if (n <= 2)
 {

 return false;
 }
 else
 {
 for (int i = 0; i < n-2; i++)
 {

 if (str.substring(i,i+1).equals("b") &&
str.substring(i+2,i+3).equals("b"))

 return true;

 }
 }

 return false;

}

39

String-2 > xyBalance (MainString16.java)
We'll say that a String is xy-balanced if for all the 'x' chars in the string, there exists a 'y' char
somewhere later in the string. So "xxy" is balanced, but "xyx" is not. One 'y' can balance multiple
'x's. Return true if the given string is xy-balanced.

xyBalance("aaxbby") → true

xyBalance("aaxbb") → false

xyBalance("yaaxbb") → false

Create and test this program above using Eclipse file: MainString16.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static boolean xyBalance(String str) {

 int xIndex = maxIndex('x',str); // call helper method
 int yIndex = maxIndex('y',str);

 if (xIndex == -1) // x not in str
 {
 return true;
 }
 else
 {
 if (yIndex == -1) // y not in str and x in str

return false;
 else

return (xIndex < yIndex);
}

// Create helper method which returns the max index at which the
// character ch occurs in the string str. Unless ch doesn't occur
// in str, in which case it returns -1.

public static int maxIndex(char ch, String str)
{
 int n = str.length();
 int max = -1;
 for (int i = 0; i < n; i++)
 {
 if (str.charAt(i) == ch) max = i;
 }
 return max;
}

40

String-2 > mixString (MainString17.java)
Given two strings, a and b, create a bigger string made of the first char of a, the first char of b, the
second char of a, the second char of b, and so on. Any leftover chars go at the end of the result.

mixString("abc", "xyz") → "axbycz"

mixString("Hi", "There") → "HTihere"

mixString("xxxx", "There") → "xTxhxexre"

Create and test this program above using Eclipse file: MainString17.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static String mixString(String a, String b) {

 int n1 = a.length();
 int n2 = b.length();
 int n = Math.min(n1,n2);
 String mix = "";

 if (n1 == 0 || n2 == 0)
 {
 return a + b;
 }
 else
 {
 for (int i = 0; i < n; i++)
 {

mix = mix + a.substring(i,i+1) + b.substring(i,i+1);
 }

 if (n1 == n2)
 {

return mix;
 }
 else if (n1 < n2)
 {

return mix + b.substring(n1,n2);
 }
 else
 {

return mix + a.substring(n2,n1);
 }
 }
}

41

String-2 > repeatEnd (MainString18.java)
Given a string and an int n, return a string made of n repetitions of the last n characters of the
string. You may assume that n is between 0 and the length of the string, inclusive.

repeatEnd("Hello", 3) → "llollollo"

repeatEnd("Hello", 2) → "lolo"

repeatEnd("Hello", 1) → "o"

Create and test this program above using Eclipse file: MainString18.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

// precondition: 0 <= n <= str.length()

public static String repeatEnd(String str, int n) {

 int m = str.length();

 if (m == 0 || n == 0)
 return "";
 else
 {
 String reps = "";
 for (int i = 0; i < n; i++)
 {

reps += str.substring(m-n,m);
 }
 return reps;
 }
}

42

String-2 > repeatFront (MainString19.java)
Given a string and an int n, return a string made of the first n characters of the string, followed by
the first n-1 characters of the string, and so on. You may assume that n is between 0 and the length
of the string, inclusive (i.e. n >= 0 and n <= str.length()).

repeatFront("Chocolate", 4) → "ChocChoChC"

repeatFront("Chocolate", 3) → "ChoChC"

repeatFront("Ice Cream", 2) → "IcI"

Create and test this program above using Eclipse file: MainString19.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

// precondition: 0 <= n <= str.length()

public static String repeatFront(String str, int n) {

 int m = str.length();
 if (m == 0 || n == 0)
 return "";
 else
 {
 String reps = "";
 for (int i = 0; i < n; i++)
 {

// insert your code here

 }
 return reps;
 }
}

43

String-2 > prefixAgain (MainString20.java)
Given a string, consider the prefix string made of the first N chars of the string. Does that prefix
string appear somewhere else in the string? Assume that the string is not empty and that N is in the
range 1..str.length().

prefixAgain("abXYabc", 1) → true

prefixAgain("abXYabc", 2) → true

prefixAgain("abXYabc", 3) → false

Create and test this program above using Eclipse file: MainString20.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static boolean prefixAgain(String str, int n) {

 int m = str.length();
 if (m == 0)
 return false;
 else
 {

 String pre = str.substring(0,n);
 int prelen = pre.length();

 for (int i = 1; i < m-prelen+1; i++)
 {

 // insert your code here

 }
 return false;

 }

}

44

String-2 > repeatSeparator (MainString21.java)
Given two String variables: word, sep and an int variable: count, return a big string made of count
number of occurrences of word, separated by the separator string sep.

repeatSeparator("Word", "X", 3) → "WordXWordXWord"

repeatSeparator("This", "And", 2) → "ThisAndThis"

repeatSeparator("This", "And", 1) → "This"

Create and test this program above using Eclipse file: MainString21.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static String repeatSeparator(String word, String sep, int count) {

 String reps = "";
 for (int i = 0; i < count; i++)
 {
 if (i != count-1)

reps += word + sep;
 else

// insert your code here

 }

 // insert your code here

}

45

String-3 > countYZ (MainString22.java)
Given a string, count the number of words ending in 'y' or 'z' -- so the 'y' in "heavy" and the 'z' in
"fez" count, but not the 'y' in "yellow" (not case sensitive). We'll say that a y or z is at the end of a
word if there is not an alphabetic letter immediately following it. (Note: Character.isLetter(char) tests
if a char is an alphabetic letter.)

countYZ("fez day") → 2

countYZ("day fez") → 2

countYZ("day fyyyz") → 2

Create and test this program above using Eclipse file: MainString22.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static int countYZ(String str)
{
 int count=0;
 int n=str.length();

 for(int i = 0; i < n;i++)
 {

String str1 = "" + str.charAt(i);
if((str1.equalsIgnoreCase("y") || str1.equalsIgnoreCase("z")))
{

if(i == n-1 || !Character.isLetter(str.charAt(i+1)))
count++;

}
 }
 return count;
}

46

String-3 > sumDigits (MainString23.java)
Given a string, return the sum of the digits 0-9 that appear in the string, ignoring all other
characters. Return 0 if there are no digits in the string. (Note: Character.isDigit(char) tests if a char
is one of the chars '0', '1', .. '9'. Integer.parseInt(string) converts a string to an int.)

sumDigits("aa1bc2d3") → 6

sumDigits("aa11b33") → 8

sumDigits("Chocolate") → 0

Create and test this program above using Eclipse file: MainString23.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static int sumDigits(String str)
{
 int n = str.length();
 int sum = 0;

 if (n > 0)
 {

for (int i = 0; i < n; i++)
{

char ch = str.charAt(i);
if (Character.isDigit(ch))

// insert your code here
}

 }
 // insert your code here
}

47

String-3 > sameEnds(MainString24.java)
Given a string, return the longest substring that appears at both the beginning and end of the string
without overlapping. For example, sameEnds("abXab") is "ab".

sameEnds("abXYab") → "ab"

sameEnds("xx") → "x"

sameEnds("xxx") → "x"

Create and test this program above using Eclipse file: MainString24.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static String sameEnds(String str)
{

 int n = str.length();

 if (n <= 1)
return "";

 else
 {

String pal = "";
for (int i = 1; i < (n/2)+1; i++)
{

String front = str.substring(0,i);
String back = str.substring(n-i,n);

if (front.equals(back))
// insert your code here

}
// insert your code here

 }

}

48

String-3 > maxBlock(MainString25.java)
Given a string, return the length of the largest "block" in the string. A block is a run of adjacent chars
that are the same.

maxBlock("hoopla") → 2

maxBlock("abbCCCddBBBxx") → 3

maxBlock("") → 0

Create and test this program above using Eclipse file: MainString25.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static int maxBlock(String str)
{
 int n = str.length();
 if (n <= 1)

 return n;
 else
 {

int max = 1;
int temp = 1;

for (int i = 1; i < n; i++)
{

if (str.substring(i-1,i).equals(str.substring(i,i+1)))
{

temp++;
if (i == n-1)

max = Math.max(max,temp);
}
else
{

// insert your code here
// insert your code here

}
}
// insert your code here

 }

}

49

String-3 > sumNumbers(MainString26.java)
Given a string, return the sum of the numbers appearing in the string, ignoring all other characters. A
number is a series of 1 or more digit chars in a row. (Note: Character.isDigit(char) tests if a char is
one of the chars '0', '1', .. '9'. Integer.parseInt(string) converts a string to an int.)

sumNumbers("abc123xyz") → 123

sumNumbers("aa11b33") → 44

sumNumbers("7 11") → 18

Create and test this program above using Eclipse file: MainString26.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static int sumNumbers(String str)
{
 int n = str.length();
 int sum = 0;
 String temp = "";

 for (int i = 0; i < n; i++)
 {

if (Character.isDigit(str.charAt(i)))
{

temp += "" + str.charAt(i);
if (i == n-1)

sum += Integer.parseInt(temp);
}
else
{

if (!temp.equals(""))
{

// insert your code here
// insert your code here

}
}

}
// insert your code here

}

50

String-3 > mirrorEnds(MainString27.java)
Given a string, look for a mirror image (backwards) string at both the beginning and end of the given
string. In other words, zero or more characters at the very beginning of the given string, and at the
very end of the string in reverse order (possibly overlapping). For example, the string "abXYZba" has
the mirror end "ab".

mirrorEnds("abXYZba") → "ab"

mirrorEnds("abca") → "a"

mirrorEnds("aba") → "aba"

Create and test this program above using Eclipse file: MainString27.java.
Test the same three examples above. Also, make sure to include the static
parameter as indicated below.

public static String mirrorEnds(String str)
{

 int n = str.length();

 if (str.equals(reverseStr(str))) // str is a palindrome
 return str;

 else
 {

 String pal = "";
 for (int i = 1; i < (n/2)+1; i++)
 {

 String front = str.substring(0,i);
String back = str.substring(n-i,n);

 if (front.equals(reverseStr(back)))
// insert your code here

 }
 // insert your code here
 }

}

// helper method
 public static String reverseStr(String str)
 {

 int n = str.length();
 String reverse = "";

 for (int i = 0; i < n; i++)
 {

 reverse += str.substring((n-1)-i,n-i);
 }

 return reverse;
 } 51

Editing, compiling, and executing.

Hello, World.

Java Syntax, Primitive Types, Operators,
Arrays, Strings, and Programming Basics

Built-in data types.

Declaration and assignment statements.

52

https://pathtogeek.com/java-programming-cheatsheet
https://pathtogeek.com/category/java
https://pathtogeek.com/category/princeton-university
https://pathtogeek.com/category/programming
https://pathtogeek.com/category/reference
https://pathtogeek.com/category/resourcetree
http://introcs.cs.princeton.edu/java/11cheatsheet/
http://introcs.cs.princeton.edu/
https://pathtogeek.com/java-programming-cheatsheet

Integers.

53

https://pathtogeek.com/java-programming-cheatsheet

Floating-point numbers.

Booleans.

10 % 3 = 1

54

https://pathtogeek.com/java-programming-cheatsheet

Printing.

Parsing command-line arguments.

Comparison operators.

55

https://pathtogeek.com/java-programming-cheatsheet

Java library calls.

Math library.

56

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://pathtogeek.com/java-programming-cheatsheet

Anatomy of an if statement.

Type conversion.

57

https://pathtogeek.com/java-programming-cheatsheet

Nested if-else statement.

Anatomy of a while loop.

If and if-else statements.

58

https://pathtogeek.com/java-programming-cheatsheet

Anatomy of a for loop.

Loops.

Break statement.

59

https://pathtogeek.com/java-programming-cheatsheet

Arrays.

Inline array initialization.

Typical array-processing code.

60

https://pathtogeek.com/java-programming-cheatsheet

Methods

61

https://pathtogeek.com/java-programming-cheatsheet

Constructors.

Instance methods.

Using an object.

Instance variables.

62

https://pathtogeek.com/java-programming-cheatsheet

Classes.

String Methods
The following declarations are also permitted:
String a = "now is";
String b = "the time";
String c = " the";

https://introcs.cs.princeton.edu/java/
63

https://pathtogeek.com/java-programming-cheatsheet

	2019APCSJavaLanguageLogic01-03
	2012JavaLanguageLogic01

	2019APCSJavaPlacementNotes
	EclipseProgramsArraysPart01
	00.CHAPTER 46 --- Arrays
	01.Using Arrays
	02.Arithmetic Expressions
	03.Arrays are Objects
	04.Bounds Checking
	05.More on Array Declaration
	06.Using a Variable as an Index
	07.More Complicated Example
	08.Initializer Lists
	10.Copying Values in Slots

	EclipseProgramsArraysPart02
	21.Counting Loops and Arrays
	22.The _em_length__em_ of an Array
	23.Reading in Each Element
	24.Complete Program
	25.Array Length Determined when the Program Runs
	29.Complete Max Program
	294.Complete Summing Program
	295.Computing the Average

	2019APCSJavaPlacementNotes2
	EclipseProgramsStringsPart01
	EclipseProgramsStringsPart01
	EclipseProgramsStringsPart01
	EclipseProgramsStringsPart01-2
	Blank Page

	EclipseProgramsStringsPart02
	EclipseProgramsStringsPart02
	EclipseProgramsStringsPart02-2

	Blank Page

	EclipseProgramsStringsPart02
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	2019JavaSyntaxOperatorsArraysStringsProgrammingBasics
	Blank Page

