
Java Language: Some Basic Elements

Numeric Operators

C K *

/ % CC

KK

Numeric Comparators

! = O = = =

! O ! =

Grouping & Punct. Symbols

;

,

Boolean Operators

true false

&&

!

Control Operators

if else

for while

return break

continue

Assignment Operators

= C=

K=

Data Types

int double

long String

char boolean

Math Function Library

Math.sqrt() Math.pow()

Math.abs() Math.PI

Math.sin() Math.cos()

Math.exp() Math.log()

Math.min() Math.max()

String Operators & Methods

C " "

length() substring()

equals() equalsIgnoreCase()

charAt() compareTo()

Object Specifiers,
Operators & Methods

class static

public private

new .

main() equals()

toString()

System Print Methods

System.out.print()

System.out.println()

System.out.printf()

Array Operators
& Methods

a i

new

length

clone()

toString()

Convert String to Number

Integer.parseInt()

Double.parseDouble()

Java Language: Logic 2

In this section we will extend our Java Logic development to include logical flow of control using if,
else, and return. In Java parlance, a Java "method" is essentially a mathematical function or procedure
that produces (returns) an answer based on given logical conditions and mathematical calculations.
However, note that not all Java methods return an answer, e.g. a method may simply update an already
existing internal variable such as an average or a total.

The problems in this section will address the construction of Java code fragments (statements) that could
be used to define a Java method. These code fragments are not complete Java methods, but just part of
them. Later, we will use these code fragments to create complete Java methods.

Problem 1. Given two integer parameters a and b, return their sum if they aren't equal, otherwise return
double their sum. Construct a Java code fragment (statements) for a Java method that will return the
correct answers under the given conditions.

general format long way 1 long way 2 short way 1 short way 2

if (condition)
{

 return ans1;
}
else
{

 return ans2;
}

int ans1 = a + b;
int ans2 = 2*ans1;

if (a != b)
{
 return ans1;
}
else
{
 return ans2;
}

int ans1 = a + b;
int ans2 = 2*ans1;

if (a == b)
{
 return ans2;
}
else
{
 return ans1;
}

if (a != b)
 return (a + b);
else
 return 2*(a + b);

if (a == b)
 return 2*(a + b);
else
 return (a + b);

In the table above we have given examples of four different correct solutions. Notice that in the two long
versions we have defined integer variables ans1 and ans2, which strictly speaking isn't necessary here
but often in more complex situations it will be very helpful to do so. Also, in the two long versions we
have included the curly braces, which again strictly speaking isn't necessary here, since there is only one
statement following the logical flow of control operators if and else. However, if there is more than one
statement following one these logical operators then the curly braces must be included, otherwise the
Java code won't be interpreted correctly and hence won't run correctly.

Problem 2. Given an integer parameter n, return the absolute difference between n and 21, except return
double the absolute difference if n is over 21. Construct a Java code fragment (statements) for a Java
method that will return the correct answers under the given conditions.

way 1 way 2

if (n > 21)
 return 2*Math.abs(n-21);
else
 return Math.abs(n-21);

if (n <= 21)
 return Math.abs(n-21);
else
 return 2*Math.abs(n-21);

Problem 3. Given two integer parameters a and b, and a boolean parameter negative, if negative is true
then return true if a and b are both negative. If negative is false, return true if a and b have opposite
signs. Otherwise, return false. Construct a Java code fragment (statements) for a Java method that will
return the correct answers under the given conditions.

way 1 way 2

if (negative)
{
 if (a < 0 && b < 0)
 return true;
 else
 return false;
}
else
{
 if (a*b < 0)
 return true;
 else
 return false;
}

if (negative)
 return (a < 0 && b < 0);
else
 return (a*b < 0);

Notice that, since in each of the statements if (a < 0 && b < 0) and if (a*b < 0) we are testing a boolean
(logical) condition and returning true or false based on whether or not the condition itself is true or false,
we may simply return the boolean value of the logical condition itself ! As you can see, there are often
several ways to write Java code that works. One of the most appealing and interesting aspects of Java
programming is to try to find and create the most elegant (logically clear, concise) solution possible.

Homework. Here are some more problems for you to do on your own. In each one, construct a Java
code fragment (statements) for a Java method that will return the correct answers under the given
conditions.

Problem 4. Given three integer parameters a, b, and c, return the largest one.

Problem 5. Given two integer parameters a and b, return whichever value is nearest to the value 10, or
return 0 in the event of a tie. Hint: Use Math.abs(x).

Problem 6. Given two positive integer parameters a and b, return the larger value that is in the range
from 10 to 20 inclusive, or return 0 if neither is in that range.

Problem 7. Given two integer parameters a and b, return false if one is negative. Return true if they aren't
negative and have the same last digit, such as with 27 and 57. Otherwise, return false. Note that the
"mod" operator, %, computes remainders, so 17 % 10 is 7, i.e. 17 mod 10 is the remainder after
dividing 17 by 10, which is 7.

