1. Use Green's Theorem and/or a computer algebra system to evaluate $\int_{C} P d x+Q d y$, where $P(x, y)=x^{4} y^{5}, Q(x, y)=-x^{7} y^{6}$, and C is the circle $x^{2}+y^{2}=4$.

Select the correct answer.
a. $624 \pi^{2}$
b. $65,640 \pi$
c. $-32,977 \pi$
d. -104π
e. 208
2. Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
$\int_{C}(4 x y) d x+\left(4 x^{2}\right) d y$
C consists of the line segment from $(-3,0)$ to $(3,0)$ and the top half of the circle $y^{2}+x^{2}=9$.

Select the correct answer.
a. 0
b. 8
c. 16
d. 5.333333
e. 18
3. Use Green's Theorem to evaluate the line integral along the given positively oriented curve.

$$
\int_{C} \mathbf{F} d \mathbf{r}, \mathbf{F}(x, y)=\left(y^{2}-x^{2} y\right) \mathbf{i}+x y^{2} \mathbf{j}
$$

C consists of the circle $x^{2}+y^{2}=16$ from $(4,0)$ to $(2,2)$ and the line segments from $(2,2)$ to $(0,0)$ and from $(0,0)$ to $(4,0)$.

Select the correct answer.
a. $I \approx 37.77$
b. $I \approx 42.71$
c. $I \approx 41.39$
d. $I \approx 35.43$
e. $I \approx 32.43$
4. Use Green's Theorem to find the work done by the force $\mathbf{F}(x, y)=x(x+5 y) \mathbf{i}+4 x y^{2} \mathbf{j}$ in moving a particle from the origin along the x-axis to $(4,0)$ then along the line segment to $(0,4)$ and then back to the origin along the y-axis.

Select the correct answer.
a. -6
b. 32
c. -32
d. 192
e. -192
5. A particle starts at the point $(-3,0)$, moves along the x-axis to $(3,0)$ and then along the semicircle $y=\sqrt{9-x^{2}}$ to the starting point. Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F}(x, y)=\left\langle 24 x, 8 x^{3}+24 x y^{2}\right\rangle$.

Select the correct answer.
a. 486π
b. 972π
c. 486
d. 0
e. 48π
6. A plane lamina with constant density $\rho(x, y)=12$ occupies a region in the $x y$-plane bounded by a simple closed path C. Its moments of inertia about the axes are $I_{x}=-\frac{\rho}{3} \int_{C} y^{3} d x$ and $I_{y}=\frac{\rho}{3} \int_{C} x^{3} d y$.

Find the moments of inertia about the axes, if C is a rectangle with vertices $(0,0),(4,0),(4,5)$ and $(0,5)$.

Select the correct answer.
a. $(2,000,1,280)$
b. $(-1,280,1,280)$
c. $(2,000,-1,280)$
d. $(-2,000,1,280)$
e. $(-2,880,1,200)$
7. Find the curl of the vector field.
$\mathbf{F}(x, y, z)=2 x y \mathbf{i}+10 y z \mathbf{j}+5 x z \mathbf{k}$

Select the correct answer.
a. $-10 y \mathbf{i}-5 z \mathbf{j}-2 x \mathbf{k}$
b. $-5 y \mathbf{i}-10 z \mathbf{j}-2 x \mathbf{k}$
c. $-2 y \mathbf{i}-5 z \mathbf{j}-10 x \mathbf{k}$
d. $2 y \mathbf{i}-5 z \mathbf{j}+10 x \mathbf{k}$
e. none of these
8. Find the correct identity, if f is a scalar field, \mathbf{F} and \mathbf{G} are vector fields.

Select the correct answer.
a. $\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{div} \mathbf{F}+\operatorname{div} \mathbf{G}$
b. $\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{curl} \mathbf{F}+\operatorname{div} \mathbf{G}$
c. $\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{curl} \mathbf{F}+\operatorname{curl} \mathbf{G}$
d. $\operatorname{curl}(\mathbf{F}+\mathbf{G})=\operatorname{div} \mathbf{F}+\operatorname{curl} \mathbf{G}$
e. none of these
9. Find the correct identity, if f is a scalar field, \mathbf{F} and \mathbf{G} are vector fields.

Select the correct answer.
a. $\operatorname{div}(f \mathbf{F})=f \operatorname{curl}(\mathbf{F})+(\nabla f) \times \mathbf{F}$
b. $\operatorname{div}(f \mathbf{F})=f \operatorname{div}(\mathbf{F})+\mathbf{F} \cdot \nabla f$
c. $\quad \operatorname{curl}(f \mathbf{F})=f \operatorname{div}(\mathbf{F})+\mathbf{F} \cdot \nabla f$
d. none of these
10. Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=e^{-7 x} \mathbf{i}+e^{4 y} \mathbf{j}+e^{5 z} \mathbf{k}$ and C is the boundary of the part of the plane $8 x+y+8 z=8$ in the first octant.

Select the correct answer.
a. 0
b. 23
c. 49
d. 16
e. 69
11. Find a parametric representation for the part of the elliptic paraboloid $x+y^{2}+6 z^{2}=9$ that lies in front of the plane $x=0$.

Select the correct answer.
a. $x=x, y= \pm \sqrt{9-x+6 z^{2}}, \quad z=z$
b. $x=x, \quad y=\sqrt{9-x+6 z^{2}}, \quad z=z$
c. $x=9-y^{2}-6 z^{2}, \quad y=y, \quad z=y, 0 \leq y^{2}+6 z^{2} \leq 3$
d. $x=9-y^{2}-6 z^{2}, y=y, \quad z=y, y^{2}+6 z^{2} \geq 9$
e. $x=9-y^{2}-6 z^{2}, \quad y=y, \quad z=y, \quad y^{2}+6 z^{2} \leq 9$
12. Let S be the cube with vertices $(\pm 1, \pm 1, \pm 1)$. Approximate $\iint_{S} \sqrt{x^{2}+2 y^{2}+7 z^{2}}$ by using a Riemann sum as in Definition 1, taking the patches $S_{i j}$ to be the squares that are the faces of the cube and the points $P_{i j}$ to be the centers of the squares.

Select the correct answer.
a. $4(1+\sqrt{2}+\sqrt{7})$
b. $8(1+\sqrt{2}+\sqrt{7})$
c. $8(3+\sqrt{7})$
d. $8(3+\sqrt{2})$
e. none of these
13. Suppose that $f(x, y, z)=g\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)$ where g is a function of one variable such that $g(2)=$ 3. Evaluate $\iint_{S} f(x, y, z) d S$ where S is the sphere $x^{2}+y^{2}+z^{2}=4$.
Select the correct answer.
a. 24π
b. 48π
c. 12π
d. 18π
e. none of these
14. Evaluate the surface integral where S is the surface with parametric equations $x=7 u v, y=6(u+v)$, $z=6(u-v), u^{2}+v^{2}=3$.
$\iint_{S} 10 y z d S$

Select the correct answer.
a. $I=10 \pi$
b. $I=3$
c. $I=0$
d. $I=10+7 \pi$
e. $I=10+3 \pi$
15. The temperature at the point (x, y, z) in a substance with conductivity $K=9$ is $u(x, y, z)=6 x^{2}+6 y^{2}$.

Find the rate of heat flow inward across the cylindrical surface $y^{2}+z^{2}=3,0 \leq x \leq 10$.
Select the correct answer.
a. 6,480
b. $6,480 \pi$
c. 648π
d. $1,620 \pi$
e. 324π
16. Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$.
$\mathbf{F}(x, y, z)=7 x y \mathbf{i}+7 e^{z} \mathbf{j}+7 x y^{2} \mathbf{k}$
S consists of the four sides of the pyramid with vertices $(0,0,0),(3,0,0),(0,0,3),(3,0,3)$ and $(0,3,0)$ that lie to the right of the $x z$-plane, oriented in the direction of the positive y-axis.

Select the correct answer.
a. 12
b. 16
c. 49
d. 0
e. 1
17. Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$; that is, calculate the flux of \mathbf{F} across S.
$\mathbf{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+y^{3} \mathbf{k}, S$ is the sphere $x^{2}+y^{2}+z^{2}=25$
Select the correct answer.
a. 500π
b. $2,500 \pi$
c. 500
d. 7,500
e. $7,500 \pi$
18. Use a computer algebra system to compute the flux of \mathbf{F} across S.
$\mathbf{F}(x, y, z)=\sin x \cos ^{2} y \mathbf{i}+\sin ^{3} z \cos ^{4} z \mathbf{j}+\sin ^{5} z \cos ^{6} x \mathbf{k}$
S is the surface of the cube cut from the first octant by the planes $x=\frac{\pi}{2}, y=\frac{\pi}{2}, z=\frac{\pi}{2}$.
Select the correct answer.
a. 0.67
b. 2
c. 4.01
d. 1
e. 3
19. Which of the equations below is an equation of a cone?
a. $r(x, \theta)=\langle x, \cos 7 \theta, \sin 7 \theta\rangle$
b. $r(x, \theta)=\langle x, \cos 5 \theta, \sin 5 \theta\rangle$
20. Use the Divergence Theorem to calculate the surface integral.
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}$
$\mathbf{F}(x, y, z)=4 x \mathbf{i}+5 x y \mathbf{j}+3 x z \mathbf{k}$
S is the surface of the box bounded by the planes $x=0, x=5, y=0, y=3, z=0, z=4$.
Select the correct answer.
a. 2,640
b. 1,440
c. -960
d. 120
e. 140

