Anagrams

Anagrams are transposition ciphers.
Encryption is by permuting the locations

of the characters in the message, by contrast
to cryptograms which permute the alphabet.

A block-transposition cipher breaks a
larger message into uniform-sized blocks and
applies the same mixing to each block.

For example, the first-to-last
anagram reverses the order of the
characters in a message, so that

no business like show business
becomes

SSENISUB WOHS EKIL SSENISUB ON
Decryption is by the same reversal process.

A fatal problem in attempting to decrypt
an anagram is that there are typically many
ways a jumble of letters can be arranged to
form sensible English.

For example, EEBDLYAORT decrypts as
early to bed
barely dote
barely toed
barley toed
lo beet yard
lordy a beet
o lardy beet
lady to beer
o ready bet
or beet lady
to be dearly

This problem gets worse for larger messages.
Indeed, the pastime of rearranging the
characters of meaningful phrases in a
natural languages into completely different
but meaningful phrases is anagramming.

But anagrams are vulnerable to attack
by multiple anagramming, in which
the attacker has two or more messages
encrypted with the same key.

Multiple anagramming uses two or
more messages encrypted by the same
permutation of positions.

The contact method is to exclude unlikely
bigrams and try to mazimaize likely ones,
done interactively until the list becomes
manageable.

For example, among the 6 permutations of
3 characters applied simultaneously to dog,
cat

dog cat

dgo cta

odg act

ogd atc

gdo tca

god tac

exclusion of bigrams dg and gd leaves only
two:

dog cat

god tac

As with cryptograms, it is critical to run
through the tree of possibilities as efficiently
as possible, pruning whole branches of
possibilities rather than individual leaves.

Note that transposition ciphers do not affect
single-letter frequencies.

If the single-letter frequencies of a cipher
text are the same as those of English we
should infer that it s English, encrypted
with a tranposition cipher.

Note that a text length more than twice

the block length amounts to sending two
messages with the same key, which is bad,
in light of the mulitple anagramming attack.

Thus, with a text more than twice the

block length, transposition ciphers are quite
breakable.

As a simple but artificial example: how
many simultaneous permutations of strings
PYOG and OPGY do not have P adjacent to
Y and do not have 0 adjacent to G in either
rearranged string?

This is double anagramming. Because
the permutation is to act on both strings
at the same time, the first characters

P and 0 of the two strings will move
together, as will the second characters

Y and P, third characters 0 and G, and
fourth characters G and Y. The forbidden
adjacencies apply stmultaneously to both
these rearrangements.

First, what can be adjacent to P in the
rearrangement of the first string? Y is
prohibited, so it could only be 0 or G. But 0
in the first string is tied to G in the second,
and G cannot be adjacent to 0 (tied to P)
(in the second string). The only character
adjacent to P in the first string can be G,
and correspondingly (double anagramming)
in the second string only Y can be next to O.

With only one character that can be next
to P in the first string, P must be at the end
or beginning of any legal permutation of the
first string. Thus, in the first string, the
character G must have another character
next to it, in addition to P. Since 0 is
prohibited, that other character must

be Y. This drags along with it the P in

the second string, which would then be
adjacent to Y in the second string, which is
prohibited. Thus, there are no simultaneous
rearrangements which meet the conditions.

Permutations

Permutations of a given set may be viewed
as mizring the set around.

The definition is that a permutation f of a
set S is a bijective function f : S — S.

Often we use a set of integers S =
{1,2,...,n} as a convenient choice for a set
with n elements.

The standard notation for a permutation f
of n things is to list the outputs under the
corresponding inputs, with the inputs in
order:

(1 2 3 ... n)
f @2 f3) ... f(n)

For example, the permutation on
{1,2,3,4,5} which sends 1 to 2, 2 to 3, 3
to 4, 4 to 5, and 5 back to 1 is written

1 2 3 4 5
2 3 4 5 1

7

The product of two permutations f, g of a
set S is simply the composite function f o g,

defined by

(fog)(s) = flg(s)) (forseS)

For example, the product

(12345)0(12345)
2 3 4 5 1 3 4 1 5 2
is determined by following what happens
to each of the 5 inputs. The right-

hand permutation sends 1 to 3 (because
3 is below 1), and then the left-hand

permutation sends that 3 to 4 (because 4
is under 3). Thus, the product sends 1 to 4.

Similarly, the right-hand one sends 2 to 4
(because 4 is under 2), and then the left one
sends that 4 to 5 (because 5 is under 4).
Thus, the product sends 2 to 5.

After looking at all 5 inputs, one finds
1 2 3 4 5 5 1 2 3 4 5
2 3 4 5 1 3 4 1 5 2
(1 2 3 4 5
~\4 5 2 1 3
The do-nothing or identity permutation

of a set is the permutation that sends every
element to itself. In the present notation it

1s written
1 2 3 ... n
1 2 3 ... n

In the spirit of thinking of composition of
permutations as a kind of multiplication,
we use exponential notation for repeated
application of a permutation:

fl'=fo...0of

The order of a permutation f is the
smallest positive integer £ such that

f" = do-nothing permutation

The usage of this word order has a very
precise technical sense, and must not be
confused with colloquial uses!

It may not be clear that there is such a
number, but there is. (Its existence is a
very special case of Lagrange’s Theorem in
group theory. Later.)

To determine the order of a permutation
f, at worst we can use brute force. That is,
successively compute f, f2, f3, and so on
until one of these iterates is the do-nothing
permutation.

Yes, this is potentially tedious.

10

For example, to determine the order of

1 2 3
f:(231)

we first see that f itself is not the do-
nothing permutation. Compute the square

f? = (?1) ? g) # do-nothing

and then the cube

1 2 3

3 _

r=(133)
which is the identity permutation, so

order(f) =3

11

Disjoint cycle decomposition

There is internal structure to permutations,
which incidentally makes computation of
orders and other things easier.

A k-cycle is a permutation on n things
(with n > k) which moves k things in
a ‘cycle’ and does not move anything
else. That is, there are distinct elements
$1,...,S8k such that

0= i Zh
and
f(s) =s (for s not among the s;)
There is a separate notation for such a k-

cycle
f: (81 So ... Sk)

12

For example

1 2 3 4
4 1 3 2

is the 3-cycle also denoted
(142)

There are k different ways to write the same
k-cycle in this cycle notation. The last 3
cycle is

(142)=(214)=(421)

Two cycles are disjoint if the two sets
of elements they move are disjoint. For
example, as permutations of the set
{1,2,...,10}, the two cycles

(1459) (287)
are disjoint. The two cycles

(1459) (28967)

are not disjoint, since 9 is moved by both of
them.

13

Theorem: every permutation of n
things can be written as a product of
disjoint cycles.

Any such expression is a disjoint cycle
decomposition.

A further question is how to compute the
disjoint cycle decomposition of a given
permutation.

The method is recursive. To get started,
given permutation of 1,2,3,...,n, compute
the successive images f(1), f%(1), f3(1),
..., until the first moment at which these

successive images come back to 1 again,
that is, f(1) = 1. Then the first cycle in
the decomposition is

(1) £21) £21) ... F7HD)

Note that we do not repeat the 1 at the tail.

14

We continue recursively. Suppose that
we have extracted some cycles from the
permutation already (as we did above
starting with 1).

Take the first index ¢ in the list 1,2,....,n
that has not already been included in a
cycle. (If nothing is left, we’re done!)

Compute f(3), f2(i), f3(i), and so on,
until the first time that these successive
images come back to ¢ again, that is, until

f¢(i) = i. Then include the cycle
(i f(3) f2(2) £2(0) .. SR (D)

in the cycle decomposition of f.

15

To determine the disjoint cycle
decomposition of

f_(1 2345678
“\7 14326 5 8

track the successive images of 1, namely

f(1) = 7

f2 (1) = =5

2 = f(2Q) = f6) = 2
i = [P = f(2) = 1

so 1 is in the cycle (1752).

The first element in the list 1,2,...,8 not
in the 4-cycle including 1 is 3, which has
iterated images f(3) = 4, and f(f(3)) =
f(4) = 3, so we have a 2-cycle (3 4).

The first leftover element is 6, which
generates a 1-cycle, which does nothing,
so we ignore it. The last leftover is 8, also
generating a 1-cycle. Thus, the disjoint
cycle decomposition is

F=01752)(34)

16

Theorem: The order of a k-cycle is its
length k. The order of a product of
cycles is the least common multiple (often
abbreviated [.c.m. of their lengths.

The least common multiple of several
integers ki, ..., k; is the smallest positive
integer M which is a multiple of every k;.

That is, M > 0and M % k; = 0 for all
indices 1.

Thus, to compute the order of a
permutation, it is often wise to determine
its disjoint cycle decomposition and
compute the least common multiple of the
cycle lengths.

Note that it does not matter whether 1-
cycles are included or not, since they do not
move anything and also do not contribute to
least common multiple computations.

17

How to compute lcms?
Brute force is possible, but suboptimal.

A simple case is that the l.c.m. of two
numbers with no common prime
factors is simply their product.

Thus, for example, by the theorem, the lecm
of 15 and 68 is their product, 1020, because
15 and 68 have no common prime factor.

How can we assert that 15 and 68 have no
common prime factor?

For small integers, factorization into primes
of the two integers (by trial division) and
comparison of prime factors occurring might
verify that two integers have no common
prime factors: by trial division 15 = 3 -5
and 68 = 22 - 17 are the prime factorizations.

(In real life, one would only use the
Fuclidean Algorithm to find common
factors.)

18

More generally,

Theorem:

m -n

| —
cm(m, n) aed(m. 1)

where gcd(m, n) is the greatest common
divisor of m, n.

The gcd of m,n is defined to be the largest
integer d such that d divides both m and
n (evenly), meaning that m % d = 0 and

n%d=0.

Ok, now how do we compute gcds? Again,
brute force is possible.

Also, looking directly at prime
factorizations.

In real life, one would only use the
Euclidean Algorithm to find gcds.

19

