Fixed points of permutations

Let f : § — S be a permutation of a set

S. An element s € S is a fixed point of

fif f(s) = s. That is, the fixed points of

a permutation are the points not moved by
the permutation.

For example,

ot 23456
~\1 3 2 6 5 4
has fixed points {1,5}, since f(1) = 1 and

f(5) = 5 and everything else is sent to
something different.

We might be interested in whether a
random permutation has fixed points, or
not, or how many we should expect it to
have, and such things.

This is a good exercise in counting, as well
as informative about random choices of
mixing functions.



Thinking of a (block) cipher as a
permutation (depending on the key) on
strings of a certain size, we would not want
such a permutation to have many fixed
points.

Information about typical behavior of
permutations may shed light on how hard
we might expect to have to work to achieve
a whole family of good mixing effects,
parametrized by the key.

In symmetric ciphers such as DES, AES
(Rijndael), as opposed to asymmetric
(public-key) ciphers such as RSA, the
whole cipher is usually put together from
smaller pieces (S-boxes) that do the critical
and hopefully very tricky mixing.



To count permutations of {1,...,10}
having at least one fixed point:

at least 3 approaches: an inclusion-
exclusion approach (maybe most intuitive),
a recursive approach (slicked-up version of
inclusion-exclusion), and a cycle-structure
approach with the virtue that it gives a

sort of formula, though not so useful for
numerical evaluation.

Try to count permutations having at least
one fixed point

no. fixing ‘1’ 4+ no.fixing ‘2’

+no. fixing ‘3’ + ...+ no. fixing ‘10’

_ (110) (10— 1)!

since there are (110) choices of single-element

subset to be fixed, and for each choice there
are (10 — 1)! permutations altogether of the
remaining 10 — 1 elements.



But this definitely overcounts: a
permutation that fixes more than one
element occurs in more than one of the
summands.

Try to compensate by subtracting from the
previous count the quantity

no. fixing ‘1’ and ‘2’

+ no. fixing ‘1’ and ‘3’
+...+ no.fixing ‘1’ and ‘10’
+ no. fixing ‘2’ and ‘3’

+ ...+ no.fixing ‘9’ and ‘10’

() 10

with (120) choices of two-element subset
to be fixed, and for each choice (10 — 2)!
permutations of the remaining 10 — 2
elements.



So far we’ve approximated the number of
permutations with at least one fixed point

(110) (10— 1)! — (12()) (10 — 2)!

But now we’ve have over-counted or under-
counted permutations fixing at least 3
elements.

Indeed, if a permutation P fixes exactly

3 elements it will have been counted (?)
times in the first summand in that last
expression, once for each 1-element subset of
the 3 elements, and (g) times in the second
summand, once for each 2-element subset of
the 3 elements. Thus, the net count so far
of such a permutation is

()-)-+-r-

But we want the net count to be 1.



To compensate for this miscount we add
no. perms fixing 1,2,3

+ no. perms fixing 1,2,4
+ ...+ no.perms fixing 8,9,10

:(ﬁ)-uo—a!

Thus, so far, the attempted count would be

(?)-uo—nu—(f)-uo—m!

+<?)-uo—$!

The net count of permutations fixing exactly
4 things so far is

()-()+()-e-eor-



So we’ve overcounted by 1 permutations
fixing 4 elements so far, so subtract

no. fixing 1,2,3,4

+ no. fixing 1,2,3,5
+ ...
+ no. fixing 7,8,9,10

_ (140) (10 — 4)

Net count of permutations fixing exactly 5
things:

@ i @ " @ B @ = 5—-10+10—5 =0

We've undercounted by 1 permutations
fixing 5 so far,



so add
no. fixing 1,2,3,4,5

+ no. fixing 1,2,3,4,6
+ ...
+ no. fixing 6,7,8,9,10

— (150) (10 — 5)!

The net count of permutations fixing
exactly 6 things: it would be

(1)) ()-()+C)

So we’ve overcounted by 1 so far,



so subtract
no. perms fixing 1,2,3,4,5,6
+ ...+ mno.perms fixing 5,6,7,8,9,10

:(%D-uo—al

Look at the net count of permutations
fixing exactly 7 things: it would be

AN A N AN A N N (T _ 0
1 2 3 4 5 6)
So we’ve undercounted by 1 so far, so add

no. perms fixing 1,2,3,4,5,6,7

+ ...+ no.perms fixing 4,5,6,7,8,9,10

:(5D-uo—n!



The net count of permutations fixing
exactly 8 things so far is

0-0-G-0-0-0-

(Has anyone started wondering why we’ve
been so lucky that we’ve always either over-
counted or under-counted by 1, and in

alternating cases?)
We’ve overcounted by 1 so far, so subtract
no. fixing 1,2,3,4,5,6,7,8
+ ...+ no.fixing 3,4,5,6,7,8,9,10

_ (180) (10 — 8)!

The net count of permutations fixing
exactly 9 things is would be

0-00)-0)r-+()-() -

10



(For odd k such as k =9, as in the odd case,

we can use the fact that (I:) = (kliz) and
the opposite signs that occur in the net count

expression to see that we’ll get a net count of
0, but why do we always get a net count of 2
in the even case?)
We’ve undercounted by 1 so far, so add
no. fixing 1,2,3,4,5,6,7,8,9
+ ...+ no.fixing 2,3,4,5,6,7,8,9,10

_ (190) (10 — 9)

The net count of permutations fixing
exactly 10 things is

10\ /10\ /10 [10\ (10
(1) - () (5) - (1) (5)
10\ (10 [10\ . (10
(6)+(2)- () (5)
= 10—45+120—210+252—210+120—45+10

= 2

11



We’ve overcounted by 1 so far, so subtract

no. perms fixing 1,2,3,4,5,6,7,8,9,10

= GS) (10— 10)! =1

Thus, in summary, the number of
permutations of 10 things fixing at least one
element is

<110) (10— 1)! — (12()) (10 — 2)!

12



How to evaluate this nicely? Not clear yet.

And what about that little point about why
we were so lucky as to be oftf by only +1 in
the net count?

The Binomial Theorem asserts
n - n 7 Mn—1
e =3 (1)
i=0

In particular, with x =1 and y = —1,

0=(1-1)"
—1— :z:j (—1)* (Z) + (=1)"

13



Recursive approach

Let f(n) be the number of permutations of
n things with no fixed point.

And

no. perms of n fixing at least one

— Z (no. perms fixing exactly k elts)
k=1

Z;(Z)-J‘(n—k)

since there are (7) k-element subsets of n
things to choose as the exact fixed-point
set, and f(n — k) counts the number of
permutations of the remaining n — k£ which
do move every one.

14



Then
no. perms of n fixing at least one

= no. all perms of n things
—no. perms of n things fixing none

=nl—f(n)

Sticking these two relations together, we get
the recursive relation

f(n)zn!—kzi:l (1) n—

which expresses each f(n) in terms of f(¢)
with ¢ < n.

Note that this requires the perhaps-
surprising convention that f(0) = 1.

15



Thus, counting the number of permutations
of n things with no fixed points, for n =

0,1,2,...:

f(0) = 1
f@) = —(})-f0)=1-1=0
2 = 20— ) -3 - f(0)
= 2—-2-0—-1-1=1
3 = 3 -3 @ - ra) -G fo)
=0—-—3-1—-3-0—-1=2
fa) = 44— -3 -G - f2)
—(5) - fF() = (5) - £(0)
= 24—-4-2—-6-1—4-0—-1=9
f6) = 51— (3)f4) - () f(3)
-(3)f2) - G)rm - () f0o)
= 120—5:-9-10-2—-—10-1—-0—-1
— 44
f6) = 6 —(f6) -5 rf@

&) r3) - ©)r@) - ©)ra) -1
720 — 6 44 — 15 -9 — 20 -2
—15-1—-—0—1=265

This is no picnic for large values of n.

16



Cycle-structure approach

We can determine the number f(n) of
permutations of n things without fixed
points in another way, by counting the
possible disjoint-cycle decompositions that
would give such a permutation.

That is, we count the number of products
of disjoint cycles such that every element
of the set {1,...,n} occurs in some cycle of
length 2 or more.

That is, we sum over 2 < k1 < ky < ...,k
with variable ¢ and with

ki+ko+...+kt=n

and count the number of products of
disjoint ki-cycle, ko-cycle, ..., ki-cycles.

For very large n this is again not feasible,
but...

17



To compute f(5):

Since 2 < k; with k; at its smallest possible
value k1 = 2, ko can be either 2 or 3, but
must be ko = 3 because of the condition

> .. ki = 5. (There is no room for a k3

in any case.) Thus, we have products of
disjoint 2-cycles and 3-cycles.

The number of disjoint products of 2-cycles
and 3-cycles is

5-4 3-2-1

20
2 3

because we have 5 choices for the first
element in the 2-cycle, then 4 choices for
the second, but then must divide by 2 since
there are two ways to write the same 2-
cycle. Similarly, for each such choice there
are 3 choices for the first element of the 3
cycle, 2 for the second, and 1 for the third,
but divide by 3 because each 3-cycle can be
written 3 ways.

18



If k4 > 2 then there is no room for any
more k;s and we conclude that k&1 = 5. And
indeed 5 cycles have no fixed points.

The number of 5-cycles is

5-4-3-2-1
= =

24

since we have 5 choices for first element,
etc., but divide by 5 since each 5 cycle can
be written 5 ways.

Altogether there are
f(5) = no. disjoint 3-cycles and 2-cycles

+no. 5-cycles
=204+24 =44

matching the recursive result.

19



For f(6):

The possible sets of cycle lengths are 2,2,2
and 2.4 and 3,3 and 6, obtained as follows,
by looking down a list of candidates in a
sort of recursive lexicographic order.

For the smallest value k&1 = 2, we have
2 S k2 S ... and ]CQ + ... = 4. With
the smallest value k5 = 2, there is only one

choice k3 = 2. With ko = 3 we fail. With
ko = 4 we again succeed.

With k&1 = 3, 3 < ks, leavning one choice
ko = 3.

Values k1 = 4, 5 fail since we cannot hit the
sum 6, but k1 = 6 is ok by itself.

20



The number of disjoint products of 2-cycle,
2-cycle, 2-cycle is
6-5 4-3 2-1 1
2 2 2 3
Divide by 3! since we will have chosen the
same permutation 3! different ways: disjoint

cycles can be written in any order. (They
commute.)

=15

Disjoint products of 2-cycle, 4-cycle is
6-5 4-3-2-1
2 4

90

Disjoint products of 3-cycle, 3-cycle is
6:-5-4 3-2-1 1

= 40
3 3 2!

And 6-cycles
6-9-4-3-2-1
6
Total = 15+ 90 + 40 4 120 = 265(matches!)

= 120

21



Approximation for large n

Ironically, the first approach gives an
approximate value for large n.

f(n) =n! — zn:(—nk—l (Z) (n — k)!

k=1

k=1
' v
k=0
—n!-(e7!) ~0.368 - n!
since
B
k=0

That is, among the n! permutations of n
things, about 1/3 have no fixed point.

22



In fact, the nearest integer to n!/e is
exactly the number of permutations with
no fixed point.

This is because the exact expression above
differs from the infinite series for n!/e by
terms whose sum is much less than 1.

That is, (with f(n) the fixed-point-free
ones)

n!-e ! — f(n)

n!
i (_1)n+2

(n + 2)

= [njltl (n+ 1)1(n+2) +]

Estimating that series by a geometric series

n!
(n+1)!

(=1)"+t IR

1 °°4n_ 1 1/4 1 1
n+1 &~ " n4+11-1/4 3 n+1
!
SO %—f(n) <<1

23




The One-Time Pad

If used correctly, the OTP or Vernam cipher
is provably perfectly secure, and is currently
the only known provably secure cipher.

However, it 1s nearly tmpossible to use
correctly.

If the key is ever re-used an OTP
degenerates into a Vigenere cipher, which
is broken (later). So key distribution is a
critical problem.

If the key is not random in a strong-enough
sense, again it degenerates into a sort of
Vigenere cipher, and is broken. Making
many high-quality random numbers is not
SO €easy.

OTPs are used to protect nuclear weapons
launch codes and high-level diplomatic

traffic,, but there key distribution is solved
by couriers with sealed diplomatic pouches.

24



The operation of an OTP is straightforward.
To encrypt a message of N characters, we
use a key of length N, encode characters as
integers 0 — 25, and (for example)

i*" character of ciphertext

= (i*® char of plaintext
+ 4t char of key ) % 26

Decryption is by the corresponding
subtraction and reduction modulo 26. That
is, we add the key to the plaintext like vector
addition modulo 26.

For example, with plaintext
homefortheholidays
and key
pazxqrasdfyipheakl
the ciphertext is
WOLBVFRLKJFWAPHATD

25



The proof of security is as follows.

The specific claim is that the conditional
probability that a character of the plaintext
1$ a particular thing given knowledge of the
ciphertext 1s equal to the probability that that
character is that particular thing (without
knowing the ciphertext).

That is, knowing the ciphertext gives us no
information about the plaintext.

This assumes that the key has never been
used before and will not be used again, and
that the key is random in a strong sense.

For example,

P(plaintext is horse|ciphertext XWTHG)

P(plaintxt horse & ciphertxt XWTHG)
P(ciphertext XWTHG)

26



P(plaintxt horse & key is XWTHG-horse)
P(key is XWTHG-horse)

subtracting length 5 vectors modulo 26.

The randomness assumption is that any

key is equally likely, and certainly is
independent of the plaintext, so this is equal
to

P(plaintxt horse) - P(key XWTHG-horse)
P(key is XWTHG-horse)

= P(plaintxt horse)
by cancelling.

Again, the formalized version of this says
that the conditional probability that the
plaintext is any particular thing given the
ciphertext is the same as the probability
that the plaintext is that thing.

27



Randomness

Old or new ciphers are essentially worthless
without a good source of random numbers
to choose keys, etc.

On linux/unix, /dev/random and
/dev/urandom are processes that attempt
to distill good random bytes from processes,
keyboard activity, etc.

Even very good pseudorandom number
generators (Blum-Blum-Shub, Naor-
Reingold) fail in the sense that they can be
no better than the random seed and other
initial data they use.

Even the very definition of random is
problemmatical.

Elementary probability does not suffice to
define randomness.

28



For example, the bit string
1100110011001100110011
is intuitively not random, while maybe

1111010010000110101001

1S more random.

Yet, if we generate sequences of bits via a
fair coin with values 1 and O repeatedly
(assuming independence) then every
sequence of length 22 is equally likely,
with probability 1/2%2.

That is, the above two strings are equally
likely, even though one seems to us to have
a pattern and the other perhaps does not.

29



Among many attempts to make rigorous
the notion of randomness, the notion

of Kolmogorov complexity is more
successful than most.

Very roughly, in that setting, a thing s
random if it has no shorter description than
itself.

A paraphrase: a thing is random if it is not
compressible.

There is the danger here of subjectivism or
relativism, in that the descriptive apparatus
and /or the compression apparatus may
change.

But a suitably careful formulation of the
idea in fact allows proof that a subtler
version of this is really well-defined.

30



For cryptographic purposes, an essentially
equivalent intuitive notion is that the
next bit should not be predictable from the
PTEVIOUS ONES.

But what does predictable mean?

If the sequence is produced by a
deterministic process, then it must be
predictable by the process computing it.

Maybe the idea would be that lacking a
secret (key) the bits are unpredictable,
even if produced by a known deterministic
process.

But does it seem possible that zillions of
unpredictable bits could be produced from a
secret that might consist of just 128 bits?

Shouldn’t there be some conservation of
randomness?

31



