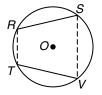
Homework 10.2

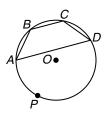
NAME

10-3 Study Guide and Intervention Arcs and Chords

Arcs and Chords Points on a circle determine both chords and arcs. Several properties are related to points on a circle.


- In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.
- If all the vertices of a polygon lie on a circle, the polygon is said to be **inscribed** in the circle and the circle is **circumscribed** about the polygon.

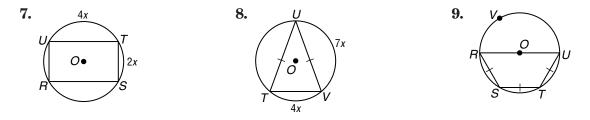
If $\overline{AB} \cong \overline{BC} \cong \overline{CD}$ and $\widehat{mBC} = 50$, what is \widehat{mAPD} ?


are congruent. $\widehat{mBC} = 50$, so $\widehat{mAB} + \widehat{mBC} + \widehat{mCD} = 50 + 50 + 50 = 150$. Then $\widehat{mAPD} = 360 - 150$ or 210.

Chords \overline{AB} , \overline{BC} , and \overline{CD} are congruent, so \widehat{AB} , \widehat{BC} , and \widehat{CD}

Trapezoid *ABCD* is inscribed in $\bigcirc O$.

 $\widehat{RS} \cong \widehat{TV}$ if and only if $\overline{RS} \cong \overline{TV}$. RSVT is inscribed in $\bigcirc O$. $\odot O$ is circumscribed about RSVT.


Exercises

Example

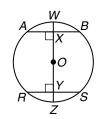
Each regular polygon is inscribed in a circle. Determine the measure of each arc that corresponds to a side of the polygon.

1. hexagon	2. pentagon	3. triangle	
4. square	5. octagon	6. 36-gon	

Determine the measure of each arc of the circle circumscribed about the polygon.

Homework 10.2

NAME


10-3

Study Guide and Intervention (continued)

Arcs and Chords

Diameters and Chords

- In a circle, if a diameter is perpendicular to a chord, then it bisects the chord and its arc.
- In a circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

DATE

If $\overline{WZ} \perp \overline{AB}$, then $\overline{AX} \cong \overline{XB}$ and $\widehat{AW} \cong \overline{WB}$. If OX = OY, then $\overline{AB} \cong \overline{RS}$. If $\overline{AB} \cong \overline{RS}$, then \overline{AB} and \overline{RS} are equidistant from point O.

Example In $\bigcirc O$, $\overline{CD} \perp \overline{OE}$, OD = 15, and CD = 24. Find x.

A diameter or radius perpendicular to a chord bisects the chord, so ED is half of CD.

 $ED = \frac{1}{2}(24)$ = 12

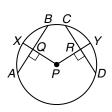
Use the Pythagorean Theorem to find x in $\triangle OED$.

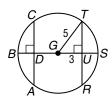
$(OE)^2 + (ED)^2 = (OD)^2$ $x^2 + 12^2 = 15^2$ $x^2 + 144 = 225$ $x^2 = 81$	Pythagorean Theorem Substitution Multiply. Subtract 144 from each side.
$x^{2} = 81$	Subtract 144 from each side.
x = 9	Take the square root of each side.

Exercises

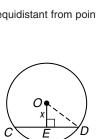
10. TU

13. CD


In $\bigcirc P$, CD = 24 and $\widehat{mCY} = 45$. Find each measure.


In $\bigcirc G$, DG = GU and AC = RT. Find each measure.

11. *TR*


14. GD

1. AQ	2. <i>RC</i>	3. <i>QB</i>
4. <i>AB</i>	5. \widehat{mDY}	6. $m\widehat{AB}$
7. $m\widehat{AX}$	8. $m\widehat{XB}$	9. $m\widehat{CD}$

16. A chord of a circle 20 inches long is 24 inches from the center of a circle. Find the length of the radius.

_____PERIOD _____

12. mTS

15. $m\widehat{AB}$

Homework	10	.2
----------	----	----

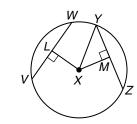
Skills Practice 10-3

NAME ___

Arcs and Chords

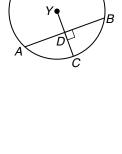
In $\bigcirc H$, $\widehat{mRS} = 82$, $\widehat{mTU} = 82$, RS = 46, and $\overline{TU} \cong \overline{RS}$. Find each measure. **1.** *TU* **2.** *TK*

- **3.** *MS* **4.** $m \angle HKU$
- **5.** $m\widehat{AS}$ **6.** $m\widehat{AR}$
- 8. $m\widehat{DU}$ 7. $m\widehat{TD}$


The radius of $\bigcirc Y$ is 34, AB = 60, and $\widehat{mAC} = 71$. Find each measure.

9. $m\widehat{BC}$ **10.** $m\widehat{AB}$

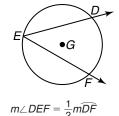
- 11. AD 12. BD
- **13.** *YD* **14.** DC


In $\bigcirc X$, LX = MX, XY = 58, and VW = 84. Find each measure. 15. YZ **16.** *YM*

17. MX 18. *MZ*

Α

Μ



Lesson 10-3

10-4 Study Guide and Intervention Inscribed Angles

Inscribed Angles An **inscribed angle** is an angle whose vertex is on a circle and whose sides contain chords of the circle. In $\bigcirc G$, inscribed $\angle DEF$ **intercepts** \widehat{DF} .

Inscribed Angle Theorem

Example In $\bigcirc G$ above, $\widehat{mDF} = 90$. Find $m \angle DEF$.

 ${\it op} DEF$ is an inscribed angle so its measure is half of the intercepted arc.

$$m \angle DEF = \frac{1}{2}m\widehat{DF}$$

= $\frac{1}{2}(90)$ or 45

NAME

Exercises

Use $\bigcirc P$ for Exercises 1–10. In $\bigcirc P$, $\overline{RS} \parallel \overline{TV}$ and $\overline{RT} \cong \overline{SV}$.

1. Name the intercepted arc for $\angle RTS$.

2. Name an inscribed angle that intercepts \widehat{SV} .

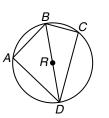
R	\sim s	
\wedge		
/ \	NP//	
$\left(\right)$	- X _+	
\backslash	\/\\/	/
	Ľ.	
	v v	

3.	$m \angle$	PRS
----	------------	-----

5. $m\widehat{RT}$ **6.** $m \angle RVT$

- 7. $m \angle QRS$ 8. $m \angle STV$
- **9.** $m\widehat{TV}$ **10.** $m \angle SVT$

4. $m\widehat{RSV}$


Homework 10.2

NAME

10-4 Study Guide and Intervention (continued)

Inscribed Angles

Angles of Inscribed Polygons An **inscribed polygon** is one whose sides are chords of a circle and whose vertices are points on the circle. Inscribed polygons have several properties.

DATE

If \widehat{BCD} is a semicircle, then $m \angle BCD = 90$.

PERIOD

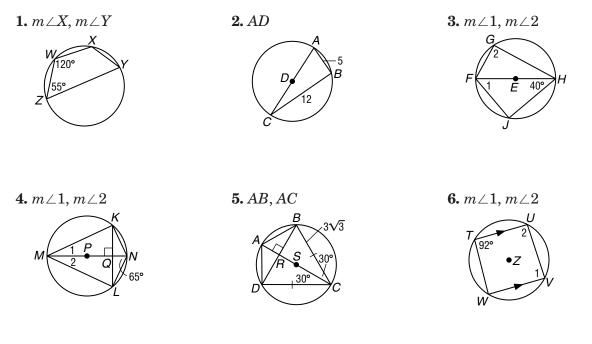
semicircle, the angle is a right angle.If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

• If an angle of an inscribed polygon intercepts a

For inscribed quadrilateral *ABCD*, $m \angle A + m \angle C = 180$ and $m \angle ABC + m \angle ADC = 180$.

Example In $\bigcirc R$ above, BC = 3 and BD = 5. Find each measure.

b. *CD*


a. *m∠C*

 $\angle C$ intercepts a semicircle. Therefore $\angle C$ is a right angle and $m \angle C = 90$.

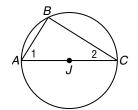
 $\triangle BCD \text{ is a right triangle, so use the}$ Pythagorean Theorem to find CD. $(CD)^2 + (BC)^2 = (BD)^2$ $(CD)^2 + 3^2 = 5^2$ $(CD)^2 = 25 - 9$ $(CD)^2 = 16$ CD = 4

Exercises

Find the measure of each angle or segment for each figure.

10-4 **Skills Practice**

Inscribed Angles


In $\bigcirc S$, $\widehat{mKL} = 80$, $\widehat{mLM} = 100$, and $\widehat{mMN} = 60$. Find the measure of each angle.

1. <i>m</i> ∠1	2. <i>m</i> ∠2
3. <i>m</i> ∠3	4. <i>m</i> ∠4

ALGEBRA Find the measure of each numbered angle.

7. $m \angle 1 = 5x - 2, m \angle 2 = 2x + 8$

8. $m \angle 1 = 5x, m \angle 3 = 3x + 10,$
$m \angle 4 = y + 7, m \angle 6 = 3y + 11$
G
$\frac{1}{2}$ $\frac{3}{4}$
1 5
Н

Quadrilateral RSTU is inscribed in $\bigcirc P$ such that $\widehat{mSTU} = 220$ and $m \angle S = 95$. Find each measure.

11. $m \angle U$

13. mRUT

P•

12. $m\widehat{SRU}$

10. *m*∠*T*

14. $m\widehat{RST}$