Using Diagrams and Kinetigrams

(pais@kinetigram.com)

- Philosophical Background: Doing Mathematics
- Kinetigram Definitions and Exercises: Dissolution Models
- Kinetigram Definitions and Exercises: Absorption Models I
- Kinetigram Definitions and Exercises: Absorption Models II
- Hearing Morris Kline's Positive Advice
- Acknowledgments and References

Copyright John Pais 2001. All rights reserved.

**1. Philosophical Background: Doing Mathematics**

Teachers of mathematics first and foremost want their students to learn how
to *do* mathematics. However, there is no unanimity on answers to the questions:
"What is mathematics?" and "How do you do it?" Perhaps too much emphasis has
been placed on trying to answer the first, and not enough on addressing the
second independently of an achieved consensus on the first. In
[6] pages 148-150, Quine comments
on Russell's witty, though extreme, answer to the first question:

There has been a perverse tendency to think of
mathematics primarily as abstract or uninterpreted and only secondarily as
interpreted or applied, and then to philosophize about application. This
was the attitude of Russell at the turn of the century, when he wrote that
in pure mathematics "we never know what we are talking about, nor whether
what we are saying is true." …This disinterpretation of mathematics was a
response to non-Euclidean geometry. Geometries came to be seen as a family
of uninterpreted systems…
I find this attitude perverse [both in geometry and in arithmetic]. The
words 'five' and 'twelve' are at no point uninterpreted; they are as
integral to our interpreted language as the word 'apple' itself. They name
two intangible objects, numbers, which are The expressions 'five', 'twelve', and 'five plus twelve' differ from 'apple' in not denoting bodies, but this is no cause for disinterpretation; the same can be said of such unmathematical terms as 'nation' or 'species'. Ordinary interpreted scientific discourse is as irredeemably committed to abstract objects--to nations, species, numbers, functions, sets--as it is to apples and other bodies. |

Mathematical objects are *abstract*, in that we can posit them and reason
about their properties and derivative objects, unencumbered by the necessity
of their having any physical attributes. Generally, as indicated by Quine, a
mathematical theory has an intended interpretation that guides the development
of the theory and, as such, is intrinsic to an understanding of the theory and
its intended mathematical objects. With this in mind, doing mathematics is not
just an analytic process of proving theorems but an interplay between the analytic
process and an intuitive unfolding of the mathematical objects one is trying
to develop. So, *doing* mathematics is an heuristic process and it is this
notion of 'doing' that we should try to communicate to our students. First and
foremost, in order for mathematics to *make sense*, students need to learn
how to intuit mathematical objects on their own.

I will now briefly discuss some recent related work. The best contemporary
account of a realist philosophy of mathematics, in terms of clarity, coherence,
and completeness, is Resnik's book [7]. In particular, he presents
a lucid account of mathematical objects as posits. Though he ultimately argues
for mathematical objects as positions in patterns, his primary discussion of
mathematical objects does not depend on this interpretation. The following is
from his introduction to Chapter 9. Positing Mathematical Objects, pages 175-176:

…[I]n so far as realists maintain that
mathematical objects are causally inert and outside space-time, they
should explain how we can attain mathematical knowledge using just our
ordinary faculties. I will now attempt to meet this challenge through a
postulational account of the genesis of our mathematical knowledge.
The basic idea is that humans brought mathematical objects into their
ken by positing them. Now to I will be assuming that in providing an epistemology for mathematics, realists are entitled to assume that we already have an abundant fund of knowledge of mathematical objects… The problem, then, is to explain how we have obtained the knowledge of mathematical objects we now have. |

Hersh's book [1] does not seriously address
traditional philosophy of mathematics, but many of his observations on doing
mathematics provide valuable insights for teachers of mathematics. Specifically,
some of his observations concerning mathematical intuition are quite interesting
and helpful, e.g. pages 65-66:

Accounting for intuitive "knowledge" in
mathematics is the basic problem of mathematical epistemology. What do we
believe, and why do we believe it? To answer this question we ask another
question: what do we teach, and how do we teach it? Or what do we try to
teach, and how do we find it necessary to teach it? We try to teach
mathematical concepts, not formally (memorizing definitions) but
intuitively--by examples, problems, developing an ability to think, which
is the expression of having successfully internalized something. What? An
intuitive mathematical idea…
We have intuition because we have mental representations of mathematical objects. We acquire these representations, not mainly by memorizing formulas, but by repeated experiences (on the elementary level, experience of manipulating physical objects; on the advanced level, experiences of doing problems and discovering things for ourselves)… Different people's representations are always being rubbed against each other to make sure they're congruent… The point is that as shared concepts, as mutually congruent mental representations, they're real objects whose existence is just as "objective" as mother love and race prejudice, as the price of tea or the fear of God. How do we distinguish mathematics from other humanistic studies?… Those
subjects that have reproducible results are called natural sciences. In
the realm of ideas, of mental objects, those ideas whose properties are
reproducible are called mathematical objects, and |

Tieszen [11] argues for the essential, in-eliminable role of mathematical intuition in doing mathematics and in making fundamental mathematical progress, tracing these ideas to their roots in the work of Husserl and Gödel.

Thurston's thoughtful and thought provoking article
[10] charges mathematicians
and mathematics teachers to spend more energy focusing their talents on communicating
how mathematics is actually done, e.g. page 168:

We mathematicians need to put far greater effort
into communicating mathematical ideas. To accomplish this, we need
to pay much more attention to communicating not just our definitions,
theorems, and proofs, but also our ways of thinking. We need to appreciate
the value of different ways of thinking about [intuiting] the same
mathematical structure.
We need to focus far more energy on understanding and explaining the basic mental infrastructure of mathematics… This entails developing mathematical language that is effective for the radical purpose of conveying ideas to people who don't already know them. |

How does one come to know and understand the nature of the intended objects
a mathematical theory is *about*? Often when this problem is addressed
in a specific course, the instructor is too close to the mathematics, in the
sense that it is an automatic, finely-tuned component of his/her own intellectual
machinery. This difficulty in attaining sufficient distance from the subject
matter can prevent the instructor from detecting and appreciating the various
features of the planned learning experience that may render the mathematical
material quite strange and unfamiliar, even alien, to the beginner.

In [4] I try
to illustrate how narrow this communication channel can be in a theory that
is intentionally presented in a such a way as to obscure or neutralize the actual
intended interpretation. (Possibly this simulates a situation not unlike rigorously
presenting the real number system to someone who doesn't already know it and
its jargon.) I then present a revised version of the same theory in which the
mathematical language is carefully chosen to communicate the intended interpretation,
together with the use of visual language, diagrams and kinetigrams, to help
the reader unfold his/her intuition of the intended mathematical objects. In
the remainder of the present paper I will briefly show how visual representations
using diagrams and kinetigrams can play an essential role in intuiting some
mathematical objects that can be used to model some pharmacokinetic processes.