Exponential Functions & Flow Curves Cheat Sheet

Dr. John Pais

Ladue Horton Watkins
pais.john@gmail.com

Exponential function:
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Parametrization of the unit hyperbola: [cosh(?), sinh(z) ]
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Complex exponential for a + bi:
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Matrix exponential function for a square n-by-n matrix 4:
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where /is the n-by-n identity matrix.
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Example for a diagonal matrix: let 4=| 0 3 0 | and verify that =1 0 &' 0 @
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This will be very useful when we model the flow of liquid in a system of tanks.



Derivative of matrix exponential function for a square matrix n-by-n matrix A4:
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Matrices that capture the properties of the number 1 and the complex number i
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Recall the matrix exponential function (above) for a square n-by-n matrix 4 :
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where /is the n-by-n identity matrix.
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, complex numbers as 2-by-2 matrices.
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(a + bi)t

(3) So, the matrix version of the complex number formula e =e%( cos(bt) +i-sin(bt)) is
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where 4= 0 , B= ,A+B= and since AB=BA.
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This will be very useful when we model the flow of liquid in a closed system of tanks.
A Linear Dynamical System in R3 is given by the following equations:

o'(t) =A-a(t), o(0) =K, where o'(7) is the velocity vector field of a curve o(¢) in R3,
A is a 3-by-3 real matrix, and K, is a 3-by-1 real vector of initial conditions for the system.

Define the flow of the system by F(t) = eAt, then a solution curve or flow curve of the system
is given by o) =F(¢)-K, = eAtKO, since as we have seen above F'(¢) =D[eAz] =AeAt, and

so, o' (1) =F"' (1) -KOZAeAtKo =A-a(t) and 0(0) =K. Hence, o.(¢) = eA7<0 is a solution to
the linear dynamical system and it's not hard to show it is the unique solution.

The ability to explicitly compute a solution curve or flow curve of the system depends on

the ease or difficulty of explicitly computing the flow of the system F(¢) = e The standard
approach is to find the eigenvalues and eigenvectors of the matrix 4. The eigenvalues are

obtained by finding the roots of the characteristic equation of A: det(A — A1) =0.1f A is an
eigenvalue of 4 of multiplicity m, then the corresponding eigenvectors are found by finding

a basis for the null space of the operator (4 — A1 )m In the case of a real 3-by-3 matrix 4,

three linearly independent eigenvectors are found and used to create the columns of an inveritble
matrix P. Next, the flow of the system, F(7) = eAt, 1s adjusted as follows:
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Hence, this equivalent form of the flow, F(7) =P-eEt-P_1, provides another equivalent form
of the solution flow curve o(z) = F(?)-K, =P-eE’-P_1K0. In general, this form is much easier

to explicitly compute, since e£" is much easier to compute than e, For example, if the matrix 4

has three distinct real eigenvalues then e takes the form of the example (I) above. If 4 has one
real and two complex conjugate eigenvalues, then a 2-by-2 submatrix of £ takes the form of the
2-by-2 matrix in equation (II) above. Finally, if 4 has repeated eigenvalues then sometimes the
version of e with exponentials along the diagonal as in example (I) will suffice, and sometimes

yet another decomposition of e s necessary. Here is a sketch of this additional decomposition
needed for repeated eigenvalues. We begin with a diagonal matrix £ with all eigenvalues on the

diagonal including repeated entries for repeated eigenvalues. Next, let S=P-F P! and let
N=A —S. Suppose the multiplicity of the repeated eigenvalue is 2. Now, since it can be shown

that S-N=N-S and that N> =0 (matrix), we have the following
E-p-1 - _
Flo) =efM=eSTMI_ St N_ (PEP )t N p Etp-1 Ni_ p  Efp-1, (I +No).
Again, we see that the last expression on the right is quite easy to explicitly compute.

Note that the accompanying Maple worksheet contains several interactive examples of each
of these cases for 3-by-3 matrices and the code for computing them.



Brine Tank Cascade

Let brine tanks A. B. C be given of volumes 20. 40, 60. respectively, as
in Figure 1.
water

Figure 1. Three brine
tanks in cascade.

It is supposed that fluid enters tank A at rate r, drains from A to B
at rate r. drains from B to C' at rate r. then drains from tank C' at
rate r. Hence the volumes of the tanks remain constant. Let r = 10, to
illustrate the ideas.

Uniform stirring of each tank is assumed. which implies uniform salt
concentration throughout each tank.

Let ay(8). x9(t). 3(t) denote the amount, of salt at, time ¢ in cach tank.
We suppose added to tank A water containing no salt. Therefore,
the salt in all the tanks is eventually lost from the drains. The cascade
is modeled by the chemical balance law (see percent inflow/outflow discussion below).



Brine Tank Problem 1.

(#) | models the flow through this system

o

Find a curve ai(¢) = | X,(#) | whose velocity o'(¢) =| X

x3(t) x’3(t)

of brine tanks.

Let a, b, ¢ be the percent outflow of liquid for tanks A, B, C, respectively. Then these values also give
the percent outflow of brine for each (homogeneous) tank. In addition, they can be used to compute the
inflow, outflow and net change of brine for each tank.

We have a = % = %, b= % = % and c= % = % . So, each component of our velocity vector
corresponds to the rate of change of brine in the corresponding tank.
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(1) Find the eigenvalues and eigenvectors of the coefficient matrix 4 = 5 T 0
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(2) Using (1), let L=P' AP, letK=| 1 |, compute e®’=71+L¢+ % I’F+ % I’ +..
1
and finally, set o.(¢) = Pelk (guess this possible solution)
x',(2) x,(2)

(3) Using the o(¢) created in (2), show that o' (¢) = | x5(¢) |=4| x,(#) |=Ao(t), i.e. the velocity

vector for this curve models the flow through this system of brine tanks.

(4) Using (2) and (3), if you evaluate the solution «(7) at 1= 0, then the components of the vector ot( 0) should
correspond to the mitial quantity of brine in each tank. However, as you can see (calculate), these values are rather
odd using the vector K in (2). Find a vector K such that both the initial quantity of brine in each tank at r = 0 1s 20
percent of the volume of each tank and such that the formula for the solution in (2) yields the vector with these initial
conditions.





